This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1l | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> A e. RR ) |
|
| 2 | simpr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> 0 < A ) |
|
| 3 | 1 2 | elrpd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> A e. RR+ ) |
| 4 | 3 | adantr | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> A e. RR+ ) |
| 5 | simp2l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> B e. RR ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> B e. RR ) |
| 7 | simpr | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> 0 < B ) |
|
| 8 | 6 7 | elrpd | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> B e. RR+ ) |
| 9 | simp3 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. RR+ ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> C e. RR+ ) |
| 11 | simp3 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. RR+ ) |
|
| 12 | 11 | rpred | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. RR ) |
| 13 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 14 | 13 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( log ` A ) e. RR ) |
| 15 | 12 14 | remulcld | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( C x. ( log ` A ) ) e. RR ) |
| 16 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( log ` B ) e. RR ) |
| 18 | 12 17 | remulcld | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( C x. ( log ` B ) ) e. RR ) |
| 19 | efle | |- ( ( ( C x. ( log ` A ) ) e. RR /\ ( C x. ( log ` B ) ) e. RR ) -> ( ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
|
| 20 | 15 18 19 | syl2anc | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 21 | efle | |- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) ) ) |
|
| 22 | 14 17 21 | syl2anc | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) ) ) |
| 23 | 14 17 11 | lemul2d | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) ) ) |
| 24 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( exp ` ( log ` A ) ) = A ) |
| 26 | reeflog | |- ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) |
|
| 27 | 26 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( exp ` ( log ` B ) ) = B ) |
| 28 | 25 27 | breq12d | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) <-> A <_ B ) ) |
| 29 | 22 23 28 | 3bitr3rd | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A <_ B <-> ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) ) ) |
| 30 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 31 | 30 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A e. RR ) |
| 32 | 31 | recnd | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A e. CC ) |
| 33 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 34 | 33 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A =/= 0 ) |
| 35 | 12 | recnd | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. CC ) |
| 36 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
|
| 37 | 32 34 35 36 | syl3anc | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 38 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 39 | 38 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B e. RR ) |
| 40 | 39 | recnd | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B e. CC ) |
| 41 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 42 | 41 | 3ad2ant2 | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B =/= 0 ) |
| 43 | cxpef | |- ( ( B e. CC /\ B =/= 0 /\ C e. CC ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
|
| 44 | 40 42 35 43 | syl3anc | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
| 45 | 37 44 | breq12d | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( A ^c C ) <_ ( B ^c C ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 46 | 20 29 45 | 3bitr4d | |- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 47 | 4 8 10 46 | syl3anc | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 48 | 0re | |- 0 e. RR |
|
| 49 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> A e. RR ) |
|
| 50 | ltnle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> -. A <_ 0 ) ) |
|
| 51 | 48 49 50 | sylancr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < A <-> -. A <_ 0 ) ) |
| 52 | 51 | biimpa | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. A <_ 0 ) |
| 53 | 9 | rpred | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. RR ) |
| 54 | 53 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> C e. RR ) |
| 55 | rpcxpcl | |- ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) |
|
| 56 | 3 54 55 | syl2anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A ^c C ) e. RR+ ) |
| 57 | rpgt0 | |- ( ( A ^c C ) e. RR+ -> 0 < ( A ^c C ) ) |
|
| 58 | rpre | |- ( ( A ^c C ) e. RR+ -> ( A ^c C ) e. RR ) |
|
| 59 | ltnle | |- ( ( 0 e. RR /\ ( A ^c C ) e. RR ) -> ( 0 < ( A ^c C ) <-> -. ( A ^c C ) <_ 0 ) ) |
|
| 60 | 48 58 59 | sylancr | |- ( ( A ^c C ) e. RR+ -> ( 0 < ( A ^c C ) <-> -. ( A ^c C ) <_ 0 ) ) |
| 61 | 57 60 | mpbid | |- ( ( A ^c C ) e. RR+ -> -. ( A ^c C ) <_ 0 ) |
| 62 | 56 61 | syl | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. ( A ^c C ) <_ 0 ) |
| 63 | 53 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. CC ) |
| 64 | 9 | rpne0d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C =/= 0 ) |
| 65 | 0cxp | |- ( ( C e. CC /\ C =/= 0 ) -> ( 0 ^c C ) = 0 ) |
|
| 66 | 63 64 65 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 ^c C ) = 0 ) |
| 67 | 66 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 ^c C ) = 0 ) |
| 68 | 67 | breq2d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( ( A ^c C ) <_ ( 0 ^c C ) <-> ( A ^c C ) <_ 0 ) ) |
| 69 | 62 68 | mtbird | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. ( A ^c C ) <_ ( 0 ^c C ) ) |
| 70 | 52 69 | 2falsed | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A <_ 0 <-> ( A ^c C ) <_ ( 0 ^c C ) ) ) |
| 71 | breq2 | |- ( 0 = B -> ( A <_ 0 <-> A <_ B ) ) |
|
| 72 | oveq1 | |- ( 0 = B -> ( 0 ^c C ) = ( B ^c C ) ) |
|
| 73 | 72 | breq2d | |- ( 0 = B -> ( ( A ^c C ) <_ ( 0 ^c C ) <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 74 | 71 73 | bibi12d | |- ( 0 = B -> ( ( A <_ 0 <-> ( A ^c C ) <_ ( 0 ^c C ) ) <-> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) ) |
| 75 | 70 74 | syl5ibcom | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 = B -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) ) |
| 76 | 75 | imp | |- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 = B ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 77 | simp2r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ B ) |
|
| 78 | leloe | |- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
|
| 79 | 48 5 78 | sylancr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 80 | 77 79 | mpbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < B \/ 0 = B ) ) |
| 81 | 80 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 < B \/ 0 = B ) ) |
| 82 | 47 76 81 | mpjaodan | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 83 | simpr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 = A ) |
|
| 84 | simpl2r | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 <_ B ) |
|
| 85 | 83 84 | eqbrtrrd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> A <_ B ) |
| 86 | 66 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( 0 ^c C ) = 0 ) |
| 87 | 83 | oveq1d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( 0 ^c C ) = ( A ^c C ) ) |
| 88 | 86 87 | eqtr3d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 = ( A ^c C ) ) |
| 89 | simpl2l | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> B e. RR ) |
|
| 90 | 53 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> C e. RR ) |
| 91 | cxpge0 | |- ( ( B e. RR /\ 0 <_ B /\ C e. RR ) -> 0 <_ ( B ^c C ) ) |
|
| 92 | 89 84 90 91 | syl3anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 <_ ( B ^c C ) ) |
| 93 | 88 92 | eqbrtrrd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( A ^c C ) <_ ( B ^c C ) ) |
| 94 | 85 93 | 2thd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 95 | simp1r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ A ) |
|
| 96 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 97 | 48 49 96 | sylancr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 98 | 95 97 | mpbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < A \/ 0 = A ) ) |
| 99 | 82 94 98 | mpjaodan | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |