This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxple2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1l | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 2 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 3 | 1 2 | elrpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 4 | 3 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ+ ) |
| 5 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 7 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 < 𝐵 ) | |
| 8 | 6 7 | elrpd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ+ ) |
| 9 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ+ ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 𝐶 ∈ ℝ+ ) |
| 11 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ+ ) | |
| 12 | 11 | rpred | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 13 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 12 14 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 16 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 18 | 12 17 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 · ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 19 | efle | ⊢ ( ( ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐶 · ( log ‘ 𝐵 ) ) ∈ ℝ ) → ( ( 𝐶 · ( log ‘ 𝐴 ) ) ≤ ( 𝐶 · ( log ‘ 𝐵 ) ) ↔ ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ≤ ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) | |
| 20 | 15 18 19 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐶 · ( log ‘ 𝐴 ) ) ≤ ( 𝐶 · ( log ‘ 𝐵 ) ) ↔ ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ≤ ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 21 | efle | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ( exp ‘ ( log ‘ 𝐴 ) ) ≤ ( exp ‘ ( log ‘ 𝐵 ) ) ) ) | |
| 22 | 14 17 21 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ( exp ‘ ( log ‘ 𝐴 ) ) ≤ ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
| 23 | 14 17 11 | lemul2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ( 𝐶 · ( log ‘ 𝐴 ) ) ≤ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 24 | reeflog | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 26 | reeflog | ⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 28 | 25 27 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) ≤ ( exp ‘ ( log ‘ 𝐵 ) ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 29 | 22 23 28 | 3bitr3rd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 · ( log ‘ 𝐴 ) ) ≤ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 30 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 32 | 31 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 33 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ≠ 0 ) |
| 35 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 36 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) | |
| 37 | 32 34 35 36 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 38 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 40 | 39 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 41 | rpne0 | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) | |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
| 43 | cxpef | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) | |
| 44 | 40 42 35 43 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 45 | 37 44 | breq12d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ↔ ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ≤ ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 46 | 20 29 45 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 47 | 4 8 10 46 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 48 | 0re | ⊢ 0 ∈ ℝ | |
| 49 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 50 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) | |
| 51 | 48 49 50 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) |
| 52 | 51 | biimpa | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ¬ 𝐴 ≤ 0 ) |
| 53 | 9 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → 𝐶 ∈ ℝ ) |
| 55 | rpcxpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) | |
| 56 | 3 54 55 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ ) |
| 57 | rpgt0 | ⊢ ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ → 0 < ( 𝐴 ↑𝑐 𝐶 ) ) | |
| 58 | rpre | ⊢ ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) | |
| 59 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) → ( 0 < ( 𝐴 ↑𝑐 𝐶 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐶 ) ≤ 0 ) ) | |
| 60 | 48 58 59 | sylancr | ⊢ ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ → ( 0 < ( 𝐴 ↑𝑐 𝐶 ) ↔ ¬ ( 𝐴 ↑𝑐 𝐶 ) ≤ 0 ) ) |
| 61 | 57 60 | mpbid | ⊢ ( ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ+ → ¬ ( 𝐴 ↑𝑐 𝐶 ) ≤ 0 ) |
| 62 | 56 61 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ¬ ( 𝐴 ↑𝑐 𝐶 ) ≤ 0 ) |
| 63 | 53 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 64 | 9 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ≠ 0 ) |
| 65 | 0cxp | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) | |
| 66 | 63 64 65 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 68 | 67 | breq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 0 ↑𝑐 𝐶 ) ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ 0 ) ) |
| 69 | 62 68 | mtbird | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ¬ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 0 ↑𝑐 𝐶 ) ) |
| 70 | 52 69 | 2falsed | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 𝐴 ≤ 0 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 0 ↑𝑐 𝐶 ) ) ) |
| 71 | breq2 | ⊢ ( 0 = 𝐵 → ( 𝐴 ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 72 | oveq1 | ⊢ ( 0 = 𝐵 → ( 0 ↑𝑐 𝐶 ) = ( 𝐵 ↑𝑐 𝐶 ) ) | |
| 73 | 72 | breq2d | ⊢ ( 0 = 𝐵 → ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 0 ↑𝑐 𝐶 ) ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 74 | 71 73 | bibi12d | ⊢ ( 0 = 𝐵 → ( ( 𝐴 ≤ 0 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 0 ↑𝑐 𝐶 ) ) ↔ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 75 | 70 74 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 0 = 𝐵 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) ∧ 0 = 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 77 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ 𝐵 ) | |
| 78 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) | |
| 79 | 48 5 78 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
| 80 | 77 79 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
| 82 | 47 76 81 | mpjaodan | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 < 𝐴 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 83 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 0 = 𝐴 ) | |
| 84 | simpl2r | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 0 ≤ 𝐵 ) | |
| 85 | 83 84 | eqbrtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 𝐴 ≤ 𝐵 ) |
| 86 | 66 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → ( 0 ↑𝑐 𝐶 ) = 0 ) |
| 87 | 83 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → ( 0 ↑𝑐 𝐶 ) = ( 𝐴 ↑𝑐 𝐶 ) ) |
| 88 | 86 87 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 0 = ( 𝐴 ↑𝑐 𝐶 ) ) |
| 89 | simpl2l | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 90 | 53 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ℝ ) |
| 91 | cxpge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐶 ∈ ℝ ) → 0 ≤ ( 𝐵 ↑𝑐 𝐶 ) ) | |
| 92 | 89 84 90 91 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → 0 ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| 93 | 88 92 | eqbrtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
| 94 | 85 93 | 2thd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) ∧ 0 = 𝐴 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 95 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ 𝐴 ) | |
| 96 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 97 | 48 49 96 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 98 | 95 97 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 99 | 82 94 98 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |