This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxplt2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A < B <-> ( A ^c C ) < ( B ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxple2 | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) /\ C e. RR+ ) -> ( B <_ A <-> ( B ^c C ) <_ ( A ^c C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( B <_ A <-> ( B ^c C ) <_ ( A ^c C ) ) ) |
| 3 | 2 | notbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( -. B <_ A <-> -. ( B ^c C ) <_ ( A ^c C ) ) ) |
| 4 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> A e. RR ) |
|
| 5 | simp2l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> B e. RR ) |
|
| 6 | 4 5 | ltnled | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A < B <-> -. B <_ A ) ) |
| 7 | simp1r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ A ) |
|
| 8 | rpre | |- ( C e. RR+ -> C e. RR ) |
|
| 9 | 8 | 3ad2ant3 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. RR ) |
| 10 | recxpcl | |- ( ( A e. RR /\ 0 <_ A /\ C e. RR ) -> ( A ^c C ) e. RR ) |
|
| 11 | 4 7 9 10 | syl3anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A ^c C ) e. RR ) |
| 12 | simp2r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ B ) |
|
| 13 | recxpcl | |- ( ( B e. RR /\ 0 <_ B /\ C e. RR ) -> ( B ^c C ) e. RR ) |
|
| 14 | 5 12 9 13 | syl3anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( B ^c C ) e. RR ) |
| 15 | 11 14 | ltnled | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( ( A ^c C ) < ( B ^c C ) <-> -. ( B ^c C ) <_ ( A ^c C ) ) ) |
| 16 | 3 6 15 | 3bitr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A < B <-> ( A ^c C ) < ( B ^c C ) ) ) |