This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpge0 | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 4 | 3 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 5 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 6 | rpcxpcl | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) e. RR+ ) |
|
| 7 | 6 | rpge0d | |- ( ( A e. RR+ /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |
| 8 | 7 | ex | |- ( A e. RR+ -> ( B e. RR -> 0 <_ ( A ^c B ) ) ) |
| 9 | 5 8 | sylbir | |- ( ( A e. RR /\ 0 < A ) -> ( B e. RR -> 0 <_ ( A ^c B ) ) ) |
| 10 | 9 | impancom | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < A -> 0 <_ ( A ^c B ) ) ) |
| 11 | 0le1 | |- 0 <_ 1 |
|
| 12 | 0cn | |- 0 e. CC |
|
| 13 | cxp0 | |- ( 0 e. CC -> ( 0 ^c 0 ) = 1 ) |
|
| 14 | 12 13 | ax-mp | |- ( 0 ^c 0 ) = 1 |
| 15 | 11 14 | breqtrri | |- 0 <_ ( 0 ^c 0 ) |
| 16 | simpr | |- ( ( B e. RR /\ B = 0 ) -> B = 0 ) |
|
| 17 | 16 | oveq2d | |- ( ( B e. RR /\ B = 0 ) -> ( 0 ^c B ) = ( 0 ^c 0 ) ) |
| 18 | 15 17 | breqtrrid | |- ( ( B e. RR /\ B = 0 ) -> 0 <_ ( 0 ^c B ) ) |
| 19 | 0le0 | |- 0 <_ 0 |
|
| 20 | recn | |- ( B e. RR -> B e. CC ) |
|
| 21 | 0cxp | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
|
| 22 | 20 21 | sylan | |- ( ( B e. RR /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
| 23 | 19 22 | breqtrrid | |- ( ( B e. RR /\ B =/= 0 ) -> 0 <_ ( 0 ^c B ) ) |
| 24 | 18 23 | pm2.61dane | |- ( B e. RR -> 0 <_ ( 0 ^c B ) ) |
| 25 | 24 | adantl | |- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( 0 ^c B ) ) |
| 26 | oveq1 | |- ( 0 = A -> ( 0 ^c B ) = ( A ^c B ) ) |
|
| 27 | 26 | breq2d | |- ( 0 = A -> ( 0 <_ ( 0 ^c B ) <-> 0 <_ ( A ^c B ) ) ) |
| 28 | 25 27 | syl5ibcom | |- ( ( A e. RR /\ B e. RR ) -> ( 0 = A -> 0 <_ ( A ^c B ) ) ) |
| 29 | 10 28 | jaod | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A \/ 0 = A ) -> 0 <_ ( A ^c B ) ) ) |
| 30 | 4 29 | sylbid | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ A -> 0 <_ ( A ^c B ) ) ) |
| 31 | 30 | 3impia | |- ( ( A e. RR /\ B e. RR /\ 0 <_ A ) -> 0 <_ ( A ^c B ) ) |
| 32 | 31 | 3com23 | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |