This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A comparison test for convergence of a real infinite series. Exercise 3 of Gleason p. 182. (Contributed by NM, 1-May-2005) (Revised by Mario Carneiro, 24-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgcmp.1 | |- Z = ( ZZ>= ` M ) |
|
| cvgcmp.2 | |- ( ph -> N e. Z ) |
||
| cvgcmp.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| cvgcmp.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
||
| cvgcmp.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| cvgcmp.6 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( G ` k ) ) |
||
| cvgcmp.7 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( G ` k ) <_ ( F ` k ) ) |
||
| Assertion | cvgcmp | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgcmp.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | cvgcmp.2 | |- ( ph -> N e. Z ) |
|
| 3 | cvgcmp.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 4 | cvgcmp.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
|
| 5 | cvgcmp.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | cvgcmp.6 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( G ` k ) ) |
|
| 7 | cvgcmp.7 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( G ` k ) <_ ( F ` k ) ) |
|
| 8 | seqex | |- seq M ( + , G ) e. _V |
|
| 9 | 8 | a1i | |- ( ph -> seq M ( + , G ) e. _V ) |
| 10 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 10 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | 1 | climcau | |- ( ( M e. ZZ /\ seq M ( + , F ) e. dom ~~> ) -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) |
| 14 | 12 5 13 | syl2anc | |- ( ph -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) |
| 15 | 1 12 3 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 17 | 16 | recnd | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. CC ) |
| 18 | 17 | ralrimiva | |- ( ph -> A. n e. Z ( seq M ( + , F ) ` n ) e. CC ) |
| 19 | 1 | r19.29uz | |- ( ( A. n e. Z ( seq M ( + , F ) ` n ) e. CC /\ E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) |
| 20 | 19 | ex | |- ( A. n e. Z ( seq M ( + , F ) ` n ) e. CC -> ( E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x -> E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) ) |
| 21 | 18 20 | syl | |- ( ph -> ( E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x -> E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) ) |
| 22 | 21 | ralimdv | |- ( ph -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) ) |
| 23 | 14 22 | mpd | |- ( ph -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) |
| 24 | 1 | uztrn2 | |- ( ( N e. Z /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
| 25 | 2 24 | sylan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
| 26 | 1 12 4 | serfre | |- ( ph -> seq M ( + , G ) : Z --> RR ) |
| 27 | 26 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR ) |
| 28 | 27 | recnd | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. CC ) |
| 29 | 25 28 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , G ) ` n ) e. CC ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. n e. ( ZZ>= ` N ) ( seq M ( + , G ) ` n ) e. CC ) |
| 31 | 30 | adantr | |- ( ( ph /\ x e. RR+ ) -> A. n e. ( ZZ>= ` N ) ( seq M ( + , G ) ` n ) e. CC ) |
| 32 | simpll | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ph ) |
|
| 33 | 32 15 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> seq M ( + , F ) : Z --> RR ) |
| 34 | 32 2 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> N e. Z ) |
| 35 | simprl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> m e. ( ZZ>= ` N ) ) |
|
| 36 | 1 | uztrn2 | |- ( ( N e. Z /\ m e. ( ZZ>= ` N ) ) -> m e. Z ) |
| 37 | 34 35 36 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> m e. Z ) |
| 38 | 33 37 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` m ) e. RR ) |
| 39 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 40 | 39 | uztrn2 | |- ( ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) -> n e. ( ZZ>= ` N ) ) |
| 41 | 40 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> n e. ( ZZ>= ` N ) ) |
| 42 | 34 41 24 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> n e. Z ) |
| 43 | 32 42 16 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` n ) e. RR ) |
| 44 | 32 42 27 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , G ) ` n ) e. RR ) |
| 45 | 32 26 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> seq M ( + , G ) : Z --> RR ) |
| 46 | 45 37 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , G ) ` m ) e. RR ) |
| 47 | 44 46 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) e. RR ) |
| 48 | 37 1 | eleqtrdi | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> m e. ( ZZ>= ` M ) ) |
| 49 | simprr | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> n e. ( ZZ>= ` m ) ) |
|
| 50 | elfzuz | |- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
|
| 51 | 50 1 | eleqtrrdi | |- ( k e. ( M ... n ) -> k e. Z ) |
| 52 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 53 | fveq2 | |- ( m = k -> ( G ` m ) = ( G ` k ) ) |
|
| 54 | 52 53 | oveq12d | |- ( m = k -> ( ( F ` m ) - ( G ` m ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 55 | eqid | |- ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) = ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) |
|
| 56 | ovex | |- ( ( F ` k ) - ( G ` k ) ) e. _V |
|
| 57 | 54 55 56 | fvmpt | |- ( k e. Z -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 58 | 57 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 59 | 3 4 | resubcld | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - ( G ` k ) ) e. RR ) |
| 60 | 58 59 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) e. RR ) |
| 61 | 32 51 60 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) e. RR ) |
| 62 | elfzuz | |- ( k e. ( ( m + 1 ) ... n ) -> k e. ( ZZ>= ` ( m + 1 ) ) ) |
|
| 63 | peano2uz | |- ( m e. ( ZZ>= ` N ) -> ( m + 1 ) e. ( ZZ>= ` N ) ) |
|
| 64 | 35 63 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( m + 1 ) e. ( ZZ>= ` N ) ) |
| 65 | 39 | uztrn2 | |- ( ( ( m + 1 ) e. ( ZZ>= ` N ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. ( ZZ>= ` N ) ) |
| 66 | 64 65 | sylan | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. ( ZZ>= ` N ) ) |
| 67 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 68 | 2 67 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 69 | 3 4 | subge0d | |- ( ( ph /\ k e. Z ) -> ( 0 <_ ( ( F ` k ) - ( G ` k ) ) <-> ( G ` k ) <_ ( F ` k ) ) ) |
| 70 | 68 69 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( 0 <_ ( ( F ` k ) - ( G ` k ) ) <-> ( G ` k ) <_ ( F ` k ) ) ) |
| 71 | 7 70 | mpbird | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( ( F ` k ) - ( G ` k ) ) ) |
| 72 | 68 57 | syl | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 73 | 71 72 | breqtrrd | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) ) |
| 74 | 32 66 73 | syl2an2r | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> 0 <_ ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) ) |
| 75 | 62 74 | sylan2 | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ( m + 1 ) ... n ) ) -> 0 <_ ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) ) |
| 76 | 48 49 61 75 | sermono | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ) ` m ) <_ ( seq M ( + , ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ) ` n ) ) |
| 77 | elfzuz | |- ( k e. ( M ... m ) -> k e. ( ZZ>= ` M ) ) |
|
| 78 | 77 1 | eleqtrrdi | |- ( k e. ( M ... m ) -> k e. Z ) |
| 79 | 3 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 80 | 32 78 79 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... m ) ) -> ( F ` k ) e. CC ) |
| 81 | 4 | recnd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 82 | 32 78 81 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... m ) ) -> ( G ` k ) e. CC ) |
| 83 | 32 78 58 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... m ) ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 84 | 48 80 82 83 | sersub | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ) ` m ) = ( ( seq M ( + , F ) ` m ) - ( seq M ( + , G ) ` m ) ) ) |
| 85 | 42 1 | eleqtrdi | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 86 | 32 51 79 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 87 | 32 51 81 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. CC ) |
| 88 | 32 51 58 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 89 | 85 86 87 88 | sersub | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , ( m e. Z |-> ( ( F ` m ) - ( G ` m ) ) ) ) ` n ) = ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) ) |
| 90 | 76 84 89 | 3brtr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , F ) ` m ) - ( seq M ( + , G ) ` m ) ) <_ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) ) |
| 91 | 43 44 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) e. RR ) |
| 92 | 38 46 91 | lesubaddd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( ( seq M ( + , F ) ` m ) - ( seq M ( + , G ) ` m ) ) <_ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) <-> ( seq M ( + , F ) ` m ) <_ ( ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) + ( seq M ( + , G ) ` m ) ) ) ) |
| 93 | 90 92 | mpbid | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` m ) <_ ( ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) + ( seq M ( + , G ) ` m ) ) ) |
| 94 | 43 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` n ) e. CC ) |
| 95 | 44 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , G ) ` n ) e. CC ) |
| 96 | 46 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , G ) ` m ) e. CC ) |
| 97 | 94 95 96 | subsubd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) = ( ( ( seq M ( + , F ) ` n ) - ( seq M ( + , G ) ` n ) ) + ( seq M ( + , G ) ` m ) ) ) |
| 98 | 93 97 | breqtrrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` m ) <_ ( ( seq M ( + , F ) ` n ) - ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) ) |
| 99 | 38 43 47 98 | lesubd | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) <_ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) |
| 100 | 43 38 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) e. RR ) |
| 101 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 102 | 101 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> x e. RR ) |
| 103 | lelttr | |- ( ( ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) e. RR /\ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) e. RR /\ x e. RR ) -> ( ( ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) <_ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) /\ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) < x ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) < x ) ) |
|
| 104 | 47 100 102 103 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) <_ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) /\ ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) < x ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) < x ) ) |
| 105 | 99 104 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) < x -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) < x ) ) |
| 106 | 32 51 3 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. RR ) |
| 107 | 62 66 | sylan2 | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ( m + 1 ) ... n ) ) -> k e. ( ZZ>= ` N ) ) |
| 108 | 0red | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 e. RR ) |
|
| 109 | 68 4 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( G ` k ) e. RR ) |
| 110 | 68 3 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
| 111 | 108 109 110 6 7 | letrd | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( F ` k ) ) |
| 112 | 32 107 111 | syl2an2r | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ( m + 1 ) ... n ) ) -> 0 <_ ( F ` k ) ) |
| 113 | 48 49 106 112 | sermono | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , F ) ` m ) <_ ( seq M ( + , F ) ` n ) ) |
| 114 | 38 43 113 | abssubge0d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) = ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) |
| 115 | 114 | breq1d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x <-> ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) < x ) ) |
| 116 | 32 51 4 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. RR ) |
| 117 | 32 66 6 | syl2an2r | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> 0 <_ ( G ` k ) ) |
| 118 | 62 117 | sylan2 | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) /\ k e. ( ( m + 1 ) ... n ) ) -> 0 <_ ( G ` k ) ) |
| 119 | 48 49 116 118 | sermono | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( seq M ( + , G ) ` m ) <_ ( seq M ( + , G ) ` n ) ) |
| 120 | 46 44 119 | abssubge0d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) = ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) |
| 121 | 120 | breq1d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x <-> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) < x ) ) |
| 122 | 105 115 121 | 3imtr4d | |- ( ( ( ph /\ x e. RR+ ) /\ ( m e. ( ZZ>= ` N ) /\ n e. ( ZZ>= ` m ) ) ) -> ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 123 | 122 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( ZZ>= ` N ) ) /\ n e. ( ZZ>= ` m ) ) -> ( ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 124 | 123 | adantld | |- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( ZZ>= ` N ) ) /\ n e. ( ZZ>= ` m ) ) -> ( ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 125 | 124 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ m e. ( ZZ>= ` N ) ) -> ( A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 126 | 125 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 127 | 39 | r19.29uz | |- ( ( A. n e. ( ZZ>= ` N ) ( seq M ( + , G ) ` n ) e. CC /\ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 128 | 31 126 127 | syl6an | |- ( ( ph /\ x e. RR+ ) -> ( E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 129 | 128 | ralimdva | |- ( ph -> ( A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 130 | 1 39 | cau4 | |- ( N e. Z -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) ) |
| 131 | 2 130 | syl | |- ( ph -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) ) ) |
| 132 | 1 39 | cau4 | |- ( N e. Z -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 133 | 2 132 | syl | |- ( ph -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` N ) A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 134 | 129 131 133 | 3imtr4d | |- ( ph -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , F ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , F ) ` n ) - ( seq M ( + , F ) ` m ) ) ) < x ) -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 135 | 23 134 | mpd | |- ( ph -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 136 | 1 | uztrn2 | |- ( ( m e. Z /\ n e. ( ZZ>= ` m ) ) -> n e. Z ) |
| 137 | simpr | |- ( ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) |
|
| 138 | 27 | biantrurd | |- ( ( ph /\ n e. Z ) -> ( ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x <-> ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 139 | 137 138 | imbitrid | |- ( ( ph /\ n e. Z ) -> ( ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 140 | 136 139 | sylan2 | |- ( ( ph /\ ( m e. Z /\ n e. ( ZZ>= ` m ) ) ) -> ( ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 141 | 140 | anassrs | |- ( ( ( ph /\ m e. Z ) /\ n e. ( ZZ>= ` m ) ) -> ( ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 142 | 141 | ralimdva | |- ( ( ph /\ m e. Z ) -> ( A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 143 | 142 | reximdva | |- ( ph -> ( E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 144 | 143 | ralimdv | |- ( ph -> ( A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. CC /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) ) |
| 145 | 135 144 | mpd | |- ( ph -> A. x e. RR+ E. m e. Z A. n e. ( ZZ>= ` m ) ( ( seq M ( + , G ) ` n ) e. RR /\ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` m ) ) ) < x ) ) |
| 146 | 1 9 145 | caurcvg2 | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |