This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ubmelfzo | |- ( K e. ( 1 ... N ) -> ( N - K ) e. ( 0 ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> K <_ N ) |
|
| 2 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 3 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 4 | 2 3 | anim12i | |- ( ( K e. NN /\ N e. NN ) -> ( K e. NN0 /\ N e. NN0 ) ) |
| 5 | 4 | 3adant3 | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( K e. NN0 /\ N e. NN0 ) ) |
| 6 | nn0sub | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( K <_ N <-> ( N - K ) e. NN0 ) ) |
|
| 7 | 5 6 | syl | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( K <_ N <-> ( N - K ) e. NN0 ) ) |
| 8 | 1 7 | mpbid | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( N - K ) e. NN0 ) |
| 9 | simp2 | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> N e. NN ) |
|
| 10 | nngt0 | |- ( K e. NN -> 0 < K ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> 0 < K ) |
| 12 | nnre | |- ( K e. NN -> K e. RR ) |
|
| 13 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 14 | 12 13 | anim12i | |- ( ( K e. NN /\ N e. NN ) -> ( K e. RR /\ N e. RR ) ) |
| 15 | 14 | 3adant3 | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( K e. RR /\ N e. RR ) ) |
| 16 | ltsubpos | |- ( ( K e. RR /\ N e. RR ) -> ( 0 < K <-> ( N - K ) < N ) ) |
|
| 17 | 15 16 | syl | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( 0 < K <-> ( N - K ) < N ) ) |
| 18 | 11 17 | mpbid | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( N - K ) < N ) |
| 19 | 8 9 18 | 3jca | |- ( ( K e. NN /\ N e. NN /\ K <_ N ) -> ( ( N - K ) e. NN0 /\ N e. NN /\ ( N - K ) < N ) ) |
| 20 | elfz1b | |- ( K e. ( 1 ... N ) <-> ( K e. NN /\ N e. NN /\ K <_ N ) ) |
|
| 21 | elfzo0 | |- ( ( N - K ) e. ( 0 ..^ N ) <-> ( ( N - K ) e. NN0 /\ N e. NN /\ ( N - K ) < N ) ) |
|
| 22 | 19 20 21 | 3imtr4i | |- ( K e. ( 1 ... N ) -> ( N - K ) e. ( 0 ..^ N ) ) |