This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wkslem2 | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` C ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` C ) } C_ ( I ` ( F ` B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = B -> ( P ` A ) = ( P ` B ) ) |
|
| 2 | 1 | adantr | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( P ` A ) = ( P ` B ) ) |
| 3 | fveq2 | |- ( ( A + 1 ) = C -> ( P ` ( A + 1 ) ) = ( P ` C ) ) |
|
| 4 | 3 | adantl | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( P ` ( A + 1 ) ) = ( P ` C ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( ( P ` A ) = ( P ` ( A + 1 ) ) <-> ( P ` B ) = ( P ` C ) ) ) |
| 6 | 2fveq3 | |- ( A = B -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
|
| 7 | 1 | sneqd | |- ( A = B -> { ( P ` A ) } = { ( P ` B ) } ) |
| 8 | 6 7 | eqeq12d | |- ( A = B -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
| 9 | 8 | adantr | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
| 10 | 2 4 | preq12d | |- ( ( A = B /\ ( A + 1 ) = C ) -> { ( P ` A ) , ( P ` ( A + 1 ) ) } = { ( P ` B ) , ( P ` C ) } ) |
| 11 | 6 | adantr | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
| 12 | 10 11 | sseq12d | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) <-> { ( P ` B ) , ( P ` C ) } C_ ( I ` ( F ` B ) ) ) ) |
| 13 | 5 9 12 | ifpbi123d | |- ( ( A = B /\ ( A + 1 ) = C ) -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` C ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` C ) } C_ ( I ` ( F ` B ) ) ) ) ) |