This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^n conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnord | |- ( ( S e. { RR , CC } /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( n = M -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` M ) ) |
|
| 2 | 1 | sseq1d | |- ( n = M -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 3 | 2 | imbi2d | |- ( n = M -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 4 | fveq2 | |- ( n = m -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` m ) ) |
|
| 5 | 4 | sseq1d | |- ( n = m -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 6 | 5 | imbi2d | |- ( n = m -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 7 | fveq2 | |- ( n = ( m + 1 ) -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` ( m + 1 ) ) ) |
|
| 8 | 7 | sseq1d | |- ( n = ( m + 1 ) -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 9 | 8 | imbi2d | |- ( n = ( m + 1 ) -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 10 | fveq2 | |- ( n = N -> ( ( C^n ` S ) ` n ) = ( ( C^n ` S ) ` N ) ) |
|
| 11 | 10 | sseq1d | |- ( n = N -> ( ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) <-> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 12 | 11 | imbi2d | |- ( n = N -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` n ) C_ ( ( C^n ` S ) ` M ) ) <-> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 13 | ssid | |- ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) |
|
| 14 | 13 | 2a1i | |- ( M e. ZZ -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` M ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 15 | simprl | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> f e. ( CC ^pm S ) ) |
|
| 16 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 17 | 16 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> S C_ CC ) |
| 18 | 17 | adantr | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> S C_ CC ) |
| 19 | simplll | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> S e. { RR , CC } ) |
|
| 20 | eluznn0 | |- ( ( M e. NN0 /\ m e. ( ZZ>= ` M ) ) -> m e. NN0 ) |
|
| 21 | 20 | adantll | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> m e. NN0 ) |
| 22 | 21 | adantr | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> m e. NN0 ) |
| 23 | dvnf | |- ( ( S e. { RR , CC } /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC ) |
|
| 24 | 19 15 22 23 | syl3anc | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC ) |
| 25 | dvnbss | |- ( ( S e. { RR , CC } /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> dom ( ( S Dn f ) ` m ) C_ dom f ) |
|
| 26 | 19 15 22 25 | syl3anc | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) C_ dom f ) |
| 27 | dvnp1 | |- ( ( S C_ CC /\ f e. ( CC ^pm S ) /\ m e. NN0 ) -> ( ( S Dn f ) ` ( m + 1 ) ) = ( S _D ( ( S Dn f ) ` m ) ) ) |
|
| 28 | 18 15 22 27 | syl3anc | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` ( m + 1 ) ) = ( S _D ( ( S Dn f ) ` m ) ) ) |
| 29 | simprr | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) |
|
| 30 | 28 29 | eqeltrrd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( S _D ( ( S Dn f ) ` m ) ) e. ( dom f -cn-> CC ) ) |
| 31 | cncff | |- ( ( S _D ( ( S Dn f ) ` m ) ) e. ( dom f -cn-> CC ) -> ( S _D ( ( S Dn f ) ` m ) ) : dom f --> CC ) |
|
| 32 | 30 31 | syl | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( S _D ( ( S Dn f ) ` m ) ) : dom f --> CC ) |
| 33 | 32 | fdmd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( S _D ( ( S Dn f ) ` m ) ) = dom f ) |
| 34 | cnex | |- CC e. _V |
|
| 35 | elpm2g | |- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( f e. ( CC ^pm S ) <-> ( f : dom f --> CC /\ dom f C_ S ) ) ) |
|
| 36 | 34 19 35 | sylancr | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f e. ( CC ^pm S ) <-> ( f : dom f --> CC /\ dom f C_ S ) ) ) |
| 37 | 15 36 | mpbid | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f : dom f --> CC /\ dom f C_ S ) ) |
| 38 | 37 | simprd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom f C_ S ) |
| 39 | 26 38 | sstrd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) C_ S ) |
| 40 | 18 24 39 | dvbss | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( S _D ( ( S Dn f ) ` m ) ) C_ dom ( ( S Dn f ) ` m ) ) |
| 41 | 33 40 | eqsstrrd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom f C_ dom ( ( S Dn f ) ` m ) ) |
| 42 | 26 41 | eqssd | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> dom ( ( S Dn f ) ` m ) = dom f ) |
| 43 | 42 | feq2d | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( ( S Dn f ) ` m ) : dom ( ( S Dn f ) ` m ) --> CC <-> ( ( S Dn f ) ` m ) : dom f --> CC ) ) |
| 44 | 24 43 | mpbid | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) : dom f --> CC ) |
| 45 | dvcn | |- ( ( ( S C_ CC /\ ( ( S Dn f ) ` m ) : dom f --> CC /\ dom f C_ S ) /\ dom ( S _D ( ( S Dn f ) ` m ) ) = dom f ) -> ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) |
|
| 46 | 18 44 38 33 45 | syl31anc | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) |
| 47 | 15 46 | jca | |- ( ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) /\ ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) -> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) |
| 48 | 47 | ex | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) -> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
| 49 | peano2nn0 | |- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
|
| 50 | 21 49 | syl | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( m + 1 ) e. NN0 ) |
| 51 | elcpn | |- ( ( S C_ CC /\ ( m + 1 ) e. NN0 ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) ) |
|
| 52 | 17 50 51 | syl2anc | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` ( m + 1 ) ) e. ( dom f -cn-> CC ) ) ) ) |
| 53 | elcpn | |- ( ( S C_ CC /\ m e. NN0 ) -> ( f e. ( ( C^n ` S ) ` m ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
|
| 54 | 17 21 53 | syl2anc | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` m ) <-> ( f e. ( CC ^pm S ) /\ ( ( S Dn f ) ` m ) e. ( dom f -cn-> CC ) ) ) ) |
| 55 | 48 52 54 | 3imtr4d | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( f e. ( ( C^n ` S ) ` ( m + 1 ) ) -> f e. ( ( C^n ` S ) ` m ) ) ) |
| 56 | 55 | ssrdv | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` m ) ) |
| 57 | sstr2 | |- ( ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` m ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
|
| 58 | 56 57 | syl | |- ( ( ( S e. { RR , CC } /\ M e. NN0 ) /\ m e. ( ZZ>= ` M ) ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 59 | 58 | expcom | |- ( m e. ( ZZ>= ` M ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 60 | 59 | a2d | |- ( m e. ( ZZ>= ` M ) -> ( ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` m ) C_ ( ( C^n ` S ) ` M ) ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` ( m + 1 ) ) C_ ( ( C^n ` S ) ` M ) ) ) ) |
| 61 | 3 6 9 12 14 60 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 62 | 61 | com12 | |- ( ( S e. { RR , CC } /\ M e. NN0 ) -> ( N e. ( ZZ>= ` M ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) ) |
| 63 | 62 | 3impia | |- ( ( S e. { RR , CC } /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` M ) ) |