This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcpn | |- ( ( S C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` S ) ` N ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpnfval | |- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
|
| 2 | 1 | fveq1d | |- ( S C_ CC -> ( ( C^n ` S ) ` N ) = ( ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ` N ) ) |
| 3 | fveq2 | |- ( n = N -> ( ( S Dn f ) ` n ) = ( ( S Dn f ) ` N ) ) |
|
| 4 | 3 | eleq1d | |- ( n = N -> ( ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) <-> ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) ) ) |
| 5 | 4 | rabbidv | |- ( n = N -> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } = { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } ) |
| 6 | eqid | |- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) |
|
| 7 | ovex | |- ( CC ^pm S ) e. _V |
|
| 8 | 7 | rabex | |- { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } e. _V |
| 9 | 5 6 8 | fvmpt | |- ( N e. NN0 -> ( ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ` N ) = { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } ) |
| 10 | 2 9 | sylan9eq | |- ( ( S C_ CC /\ N e. NN0 ) -> ( ( C^n ` S ) ` N ) = { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } ) |
| 11 | 10 | eleq2d | |- ( ( S C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` S ) ` N ) <-> F e. { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } ) ) |
| 12 | oveq2 | |- ( f = F -> ( S Dn f ) = ( S Dn F ) ) |
|
| 13 | 12 | fveq1d | |- ( f = F -> ( ( S Dn f ) ` N ) = ( ( S Dn F ) ` N ) ) |
| 14 | dmeq | |- ( f = F -> dom f = dom F ) |
|
| 15 | 14 | oveq1d | |- ( f = F -> ( dom f -cn-> CC ) = ( dom F -cn-> CC ) ) |
| 16 | 13 15 | eleq12d | |- ( f = F -> ( ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) <-> ( ( S Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) |
| 17 | 16 | elrab | |- ( F e. { f e. ( CC ^pm S ) | ( ( S Dn f ) ` N ) e. ( dom f -cn-> CC ) } <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) |
| 18 | 11 17 | bitrdi | |- ( ( S C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` S ) ` N ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |