This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper set of integers that starts at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind4.1 | |- ( j = M -> ( ph <-> ps ) ) |
|
| uzind4.2 | |- ( j = k -> ( ph <-> ch ) ) |
||
| uzind4.3 | |- ( j = ( k + 1 ) -> ( ph <-> th ) ) |
||
| uzind4.4 | |- ( j = N -> ( ph <-> ta ) ) |
||
| uzind4.5 | |- ( M e. ZZ -> ps ) |
||
| uzind4.6 | |- ( k e. ( ZZ>= ` M ) -> ( ch -> th ) ) |
||
| Assertion | uzind4 | |- ( N e. ( ZZ>= ` M ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4.1 | |- ( j = M -> ( ph <-> ps ) ) |
|
| 2 | uzind4.2 | |- ( j = k -> ( ph <-> ch ) ) |
|
| 3 | uzind4.3 | |- ( j = ( k + 1 ) -> ( ph <-> th ) ) |
|
| 4 | uzind4.4 | |- ( j = N -> ( ph <-> ta ) ) |
|
| 5 | uzind4.5 | |- ( M e. ZZ -> ps ) |
|
| 6 | uzind4.6 | |- ( k e. ( ZZ>= ` M ) -> ( ch -> th ) ) |
|
| 7 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 8 | breq2 | |- ( m = N -> ( M <_ m <-> M <_ N ) ) |
|
| 9 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 10 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 11 | 8 9 10 | elrabd | |- ( N e. ( ZZ>= ` M ) -> N e. { m e. ZZ | M <_ m } ) |
| 12 | breq2 | |- ( m = k -> ( M <_ m <-> M <_ k ) ) |
|
| 13 | 12 | elrab | |- ( k e. { m e. ZZ | M <_ m } <-> ( k e. ZZ /\ M <_ k ) ) |
| 14 | eluz2 | |- ( k e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) |
|
| 15 | 14 | biimpri | |- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> k e. ( ZZ>= ` M ) ) |
| 16 | 15 | 3expb | |- ( ( M e. ZZ /\ ( k e. ZZ /\ M <_ k ) ) -> k e. ( ZZ>= ` M ) ) |
| 17 | 13 16 | sylan2b | |- ( ( M e. ZZ /\ k e. { m e. ZZ | M <_ m } ) -> k e. ( ZZ>= ` M ) ) |
| 18 | 17 6 | syl | |- ( ( M e. ZZ /\ k e. { m e. ZZ | M <_ m } ) -> ( ch -> th ) ) |
| 19 | 1 2 3 4 5 18 | uzind3 | |- ( ( M e. ZZ /\ N e. { m e. ZZ | M <_ m } ) -> ta ) |
| 20 | 7 11 19 | syl2anc | |- ( N e. ( ZZ>= ` M ) -> ta ) |