This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnp1 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` ( N + 1 ) ) = ( S _D ( ( S Dn F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 1 2 | eleqtrdi | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 4 | seqp1 | |- ( N e. ( ZZ>= ` 0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) ) |
| 6 | fvex | |- ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) e. _V |
|
| 7 | fvex | |- ( ( NN0 X. { F } ) ` ( N + 1 ) ) e. _V |
|
| 8 | 6 7 | opco1i | |- ( ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ( ( x e. _V |-> ( S _D x ) ) o. 1st ) ( ( NN0 X. { F } ) ` ( N + 1 ) ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) |
| 9 | 5 8 | eqtrdi | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 10 | eqid | |- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
|
| 11 | 10 | dvnfval | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 12 | 11 | 3adant3 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 13 | 12 | fveq1d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` ( N + 1 ) ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` ( N + 1 ) ) ) |
| 14 | fvex | |- ( ( S Dn F ) ` N ) e. _V |
|
| 15 | oveq2 | |- ( x = ( ( S Dn F ) ` N ) -> ( S _D x ) = ( S _D ( ( S Dn F ) ` N ) ) ) |
|
| 16 | ovex | |- ( S _D ( ( S Dn F ) ` N ) ) e. _V |
|
| 17 | 15 10 16 | fvmpt | |- ( ( ( S Dn F ) ` N ) e. _V -> ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( S _D ( ( S Dn F ) ` N ) ) ) |
| 18 | 14 17 | ax-mp | |- ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( S _D ( ( S Dn F ) ` N ) ) |
| 19 | 12 | fveq1d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) |
| 20 | 19 | fveq2d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( x e. _V |-> ( S _D x ) ) ` ( ( S Dn F ) ` N ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 21 | 18 20 | eqtr3id | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( S _D ( ( S Dn F ) ` N ) ) = ( ( x e. _V |-> ( S _D x ) ) ` ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` N ) ) ) |
| 22 | 9 13 21 | 3eqtr4d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` ( N + 1 ) ) = ( S _D ( ( S Dn F ) ` N ) ) ) |