This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A C^n function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpncn | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( dom F -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 2 | 1 | adantr | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S C_ CC ) |
| 3 | simpl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> S e. { RR , CC } ) |
|
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | 4 | a1i | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> 0 e. NN0 ) |
| 6 | elfvdm | |- ( F e. ( ( C^n ` S ) ` N ) -> N e. dom ( C^n ` S ) ) |
|
| 7 | 6 | adantl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. dom ( C^n ` S ) ) |
| 8 | fncpn | |- ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |
|
| 9 | fndm | |- ( ( C^n ` S ) Fn NN0 -> dom ( C^n ` S ) = NN0 ) |
|
| 10 | 2 8 9 | 3syl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> dom ( C^n ` S ) = NN0 ) |
| 11 | 7 10 | eleqtrd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. NN0 ) |
| 12 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 13 | 11 12 | eleqtrdi | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> N e. ( ZZ>= ` 0 ) ) |
| 14 | cpnord | |- ( ( S e. { RR , CC } /\ 0 e. NN0 /\ N e. ( ZZ>= ` 0 ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) |
|
| 15 | 3 5 13 14 | syl3anc | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( C^n ` S ) ` N ) C_ ( ( C^n ` S ) ` 0 ) ) |
| 16 | simpr | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` N ) ) |
|
| 17 | 15 16 | sseldd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( ( C^n ` S ) ` 0 ) ) |
| 18 | elcpn | |- ( ( S C_ CC /\ 0 e. NN0 ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) |
|
| 19 | 2 5 18 | syl2anc | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( ( C^n ` S ) ` 0 ) <-> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) |
| 20 | 17 19 | mpbid | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( F e. ( CC ^pm S ) /\ ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) |
| 21 | 20 | simpld | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( CC ^pm S ) ) |
| 22 | dvn0 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
|
| 23 | 2 21 22 | syl2anc | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
| 24 | 20 | simprd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> ( ( S Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) |
| 25 | 23 24 | eqeltrrd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` S ) ` N ) ) -> F e. ( dom F -cn-> CC ) ) |