This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div12 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( B x. ( A / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
|
| 2 | 1 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 3 | mulcom | |- ( ( A e. CC /\ ( B / C ) e. CC ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
| 5 | 4 | 3impb | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( ( B / C ) x. A ) ) |
| 6 | div13 | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) /\ A e. CC ) -> ( ( B / C ) x. A ) = ( ( A / C ) x. B ) ) |
|
| 7 | 6 | 3comr | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B / C ) x. A ) = ( ( A / C ) x. B ) ) |
| 8 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 9 | 8 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 10 | mulcom | |- ( ( ( A / C ) e. CC /\ B e. CC ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
|
| 11 | 9 10 | stoic3 | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) /\ B e. CC ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
| 12 | 11 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) x. B ) = ( B x. ( A / C ) ) ) |
| 13 | 5 7 12 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( B x. ( A / C ) ) ) |