This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos1bnd | |- ( ( 1 / 3 ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 2 / 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 2 | 1 | oveq1i | |- ( ( 1 ^ 2 ) / 3 ) = ( 1 / 3 ) |
| 3 | 2 | oveq2i | |- ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 x. ( 1 / 3 ) ) |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 3cn | |- 3 e. CC |
|
| 6 | 3ne0 | |- 3 =/= 0 |
|
| 7 | 4 5 6 | divreci | |- ( 2 / 3 ) = ( 2 x. ( 1 / 3 ) ) |
| 8 | 3 7 | eqtr4i | |- ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 9 | 8 | oveq2i | |- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 - ( 2 / 3 ) ) |
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | 4 5 6 | divcli | |- ( 2 / 3 ) e. CC |
| 12 | 5 6 | reccli | |- ( 1 / 3 ) e. CC |
| 13 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 14 | 13 | oveq1i | |- ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 15 | 5 6 | dividi | |- ( 3 / 3 ) = 1 |
| 16 | 4 10 5 6 | divdiri | |- ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 17 | 14 15 16 | 3eqtr3ri | |- ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 18 | 10 11 12 17 | subaddrii | |- ( 1 - ( 2 / 3 ) ) = ( 1 / 3 ) |
| 19 | 9 18 | eqtri | |- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 / 3 ) |
| 20 | 1re | |- 1 e. RR |
|
| 21 | 0lt1 | |- 0 < 1 |
|
| 22 | 1le1 | |- 1 <_ 1 |
|
| 23 | 0xr | |- 0 e. RR* |
|
| 24 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) ) |
|
| 25 | 23 20 24 | mp2an | |- ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) |
| 26 | cos01bnd | |- ( 1 e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) |
|
| 27 | 25 26 | sylbir | |- ( ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) |
| 28 | 20 21 22 27 | mp3an | |- ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) |
| 29 | 28 | simpli | |- ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) |
| 30 | 19 29 | eqbrtrri | |- ( 1 / 3 ) < ( cos ` 1 ) |
| 31 | 28 | simpri | |- ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) |
| 32 | 2 | oveq2i | |- ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 33 | 10 12 11 | subadd2i | |- ( ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) <-> ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) |
| 34 | 17 33 | mpbir | |- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
| 35 | 32 34 | eqtri | |- ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) |
| 36 | 31 35 | breqtri | |- ( cos ` 1 ) < ( 2 / 3 ) |
| 37 | 30 36 | pm3.2i | |- ( ( 1 / 3 ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 2 / 3 ) ) |