This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map x |-> -u x ). (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpart | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( -u ( _i x. A ) e/ RR+ <-> -. -u ( _i x. A ) e. RR+ ) |
|
| 2 | simpr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) = 0 ) |
|
| 3 | 0le0 | |- 0 <_ 0 |
|
| 4 | 2 3 | eqbrtrdi | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( Re ` A ) <_ 0 ) |
| 5 | 4 | biantrurd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e/ RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 6 | 1 5 | bitr3id | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. -u ( _i x. A ) e. RR+ <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 7 | 6 | con1bid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) <-> -u ( _i x. A ) e. RR+ ) ) |
| 8 | ax-icn | |- _i e. CC |
|
| 9 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 10 | 8 9 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 11 | reim0b | |- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
|
| 12 | 10 11 | syl | |- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
| 13 | imre | |- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
|
| 14 | 10 13 | syl | |- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 15 | ine0 | |- _i =/= 0 |
|
| 16 | divrec2 | |- ( ( ( _i x. A ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
|
| 17 | 8 15 16 | mp3an23 | |- ( ( _i x. A ) e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
| 18 | 10 17 | syl | |- ( A e. CC -> ( ( _i x. A ) / _i ) = ( ( 1 / _i ) x. ( _i x. A ) ) ) |
| 19 | irec | |- ( 1 / _i ) = -u _i |
|
| 20 | 19 | oveq1i | |- ( ( 1 / _i ) x. ( _i x. A ) ) = ( -u _i x. ( _i x. A ) ) |
| 21 | 18 20 | eqtrdi | |- ( A e. CC -> ( ( _i x. A ) / _i ) = ( -u _i x. ( _i x. A ) ) ) |
| 22 | divcan3 | |- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. A ) / _i ) = A ) |
|
| 23 | 8 15 22 | mp3an23 | |- ( A e. CC -> ( ( _i x. A ) / _i ) = A ) |
| 24 | 21 23 | eqtr3d | |- ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) |
| 25 | 24 | fveq2d | |- ( A e. CC -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
| 26 | 14 25 | eqtrd | |- ( A e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
| 27 | 26 | eqeq1d | |- ( A e. CC -> ( ( Im ` ( _i x. A ) ) = 0 <-> ( Re ` A ) = 0 ) ) |
| 28 | 12 27 | bitrd | |- ( A e. CC -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
| 29 | 28 | biimpar | |- ( ( A e. CC /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
| 30 | 29 | adantlr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
| 31 | mulne0 | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( _i x. A ) =/= 0 ) |
|
| 32 | 8 15 31 | mpanl12 | |- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. A ) =/= 0 ) |
| 33 | 32 | adantr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) =/= 0 ) |
| 34 | rpneg | |- ( ( ( _i x. A ) e. RR /\ ( _i x. A ) =/= 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
|
| 35 | 30 33 34 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e. RR+ <-> -. -u ( _i x. A ) e. RR+ ) ) |
| 36 | 35 | con2bid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> -. ( _i x. A ) e. RR+ ) ) |
| 37 | df-nel | |- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
|
| 38 | 36 37 | bitr4di | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( -u ( _i x. A ) e. RR+ <-> ( _i x. A ) e/ RR+ ) ) |
| 39 | 3 2 | breqtrrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> 0 <_ ( Re ` A ) ) |
| 40 | 39 | biantrurd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. A ) e/ RR+ <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
| 41 | 7 38 40 | 3bitrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) = 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 42 | 28 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( _i x. A ) e. RR <-> ( Re ` A ) = 0 ) ) |
| 43 | 42 | necon3bbid | |- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( _i x. A ) e. RR <-> ( Re ` A ) =/= 0 ) ) |
| 44 | 43 | biimpar | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR ) |
| 45 | rpre | |- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
|
| 46 | 44 45 | nsyl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. ( _i x. A ) e. RR+ ) |
| 47 | 46 37 | sylibr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e/ RR+ ) |
| 48 | 47 | biantrud | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) ) ) |
| 49 | simpr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
|
| 50 | 49 | biantrud | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
| 51 | 0re | |- 0 e. RR |
|
| 52 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 53 | ltlen | |- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) ) ) |
|
| 54 | ltnle | |- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
|
| 55 | 53 54 | bitr3d | |- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 56 | 51 52 55 | sylancr | |- ( A e. CC -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 57 | 56 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( Re ` A ) =/= 0 ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 58 | 50 57 | bitrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( 0 <_ ( Re ` A ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 59 | 48 58 | bitr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( Re ` A ) <_ 0 ) ) |
| 60 | renegcl | |- ( -u ( _i x. A ) e. RR -> -u -u ( _i x. A ) e. RR ) |
|
| 61 | 10 | negnegd | |- ( A e. CC -> -u -u ( _i x. A ) = ( _i x. A ) ) |
| 62 | 61 | eleq1d | |- ( A e. CC -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
| 63 | 62 | ad2antrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u -u ( _i x. A ) e. RR <-> ( _i x. A ) e. RR ) ) |
| 64 | 60 63 | imbitrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i x. A ) e. RR -> ( _i x. A ) e. RR ) ) |
| 65 | 44 64 | mtod | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR ) |
| 66 | rpre | |- ( -u ( _i x. A ) e. RR+ -> -u ( _i x. A ) e. RR ) |
|
| 67 | 65 66 | nsyl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -. -u ( _i x. A ) e. RR+ ) |
| 68 | 67 1 | sylibr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> -u ( _i x. A ) e/ RR+ ) |
| 69 | 68 | biantrud | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) <_ 0 <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 70 | 69 | notbid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( -. ( Re ` A ) <_ 0 <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 71 | 59 70 | bitrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( Re ` A ) =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 72 | 41 71 | pm2.61dane | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 73 | reneg | |- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
|
| 74 | 73 | breq2d | |- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> 0 <_ -u ( Re ` A ) ) ) |
| 75 | 52 | le0neg1d | |- ( A e. CC -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
| 76 | 74 75 | bitr4d | |- ( A e. CC -> ( 0 <_ ( Re ` -u A ) <-> ( Re ` A ) <_ 0 ) ) |
| 77 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 78 | 8 77 | mpan | |- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 79 | neleq1 | |- ( ( _i x. -u A ) = -u ( _i x. A ) -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
|
| 80 | 78 79 | syl | |- ( A e. CC -> ( ( _i x. -u A ) e/ RR+ <-> -u ( _i x. A ) e/ RR+ ) ) |
| 81 | 76 80 | anbi12d | |- ( A e. CC -> ( ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 82 | 81 | notbid | |- ( A e. CC -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 83 | 82 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) <-> -. ( ( Re ` A ) <_ 0 /\ -u ( _i x. A ) e/ RR+ ) ) ) |
| 84 | 72 83 | bitr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 0 <_ ( Re ` A ) /\ ( _i x. A ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u A ) /\ ( _i x. -u A ) e/ RR+ ) ) ) |