This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem con1bid

Description: A contraposition deduction. (Contributed by NM, 9-Oct-1999)

Ref Expression
Hypothesis con1bid.1
|- ( ph -> ( -. ps <-> ch ) )
Assertion con1bid
|- ( ph -> ( -. ch <-> ps ) )

Proof

Step Hyp Ref Expression
1 con1bid.1
 |-  ( ph -> ( -. ps <-> ch ) )
2 1 bicomd
 |-  ( ph -> ( ch <-> -. ps ) )
3 2 con2bid
 |-  ( ph -> ( ps <-> -. ch ) )
4 3 bicomd
 |-  ( ph -> ( -. ch <-> ps ) )