This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imre | |- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imval | |- ( A e. CC -> ( Im ` A ) = ( Re ` ( A / _i ) ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | ine0 | |- _i =/= 0 |
|
| 4 | divrec2 | |- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
|
| 5 | 2 3 4 | mp3an23 | |- ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
| 6 | irec | |- ( 1 / _i ) = -u _i |
|
| 7 | 6 | oveq1i | |- ( ( 1 / _i ) x. A ) = ( -u _i x. A ) |
| 8 | 5 7 | eqtrdi | |- ( A e. CC -> ( A / _i ) = ( -u _i x. A ) ) |
| 9 | 8 | fveq2d | |- ( A e. CC -> ( Re ` ( A / _i ) ) = ( Re ` ( -u _i x. A ) ) ) |
| 10 | 1 9 | eqtrd | |- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |