This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of Apostol p. 20. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpneg | |- ( ( A e. RR /\ A =/= 0 ) -> ( A e. RR+ <-> -. -u A e. RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
| 4 | 3 | imp | |- ( ( A e. RR /\ 0 < A ) -> 0 <_ A ) |
| 5 | 4 | olcd | |- ( ( A e. RR /\ 0 < A ) -> ( -. -u A e. RR \/ 0 <_ A ) ) |
| 6 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 7 | 6 | pm2.24d | |- ( A e. RR -> ( -. -u A e. RR -> 0 < A ) ) |
| 8 | 7 | adantr | |- ( ( A e. RR /\ A =/= 0 ) -> ( -. -u A e. RR -> 0 < A ) ) |
| 9 | ltlen | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> ( 0 <_ A /\ A =/= 0 ) ) ) |
|
| 10 | 1 9 | mpan | |- ( A e. RR -> ( 0 < A <-> ( 0 <_ A /\ A =/= 0 ) ) ) |
| 11 | 10 | biimprd | |- ( A e. RR -> ( ( 0 <_ A /\ A =/= 0 ) -> 0 < A ) ) |
| 12 | 11 | expcomd | |- ( A e. RR -> ( A =/= 0 -> ( 0 <_ A -> 0 < A ) ) ) |
| 13 | 12 | imp | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 <_ A -> 0 < A ) ) |
| 14 | 8 13 | jaod | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( -. -u A e. RR \/ 0 <_ A ) -> 0 < A ) ) |
| 15 | simpl | |- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
|
| 16 | 14 15 | jctild | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( -. -u A e. RR \/ 0 <_ A ) -> ( A e. RR /\ 0 < A ) ) ) |
| 17 | 5 16 | impbid2 | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( A e. RR /\ 0 < A ) <-> ( -. -u A e. RR \/ 0 <_ A ) ) ) |
| 18 | lenlt | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
|
| 19 | 1 18 | mpan | |- ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) |
| 20 | lt0neg1 | |- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
|
| 21 | 20 | notbid | |- ( A e. RR -> ( -. A < 0 <-> -. 0 < -u A ) ) |
| 22 | 19 21 | bitrd | |- ( A e. RR -> ( 0 <_ A <-> -. 0 < -u A ) ) |
| 23 | 22 | adantr | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 <_ A <-> -. 0 < -u A ) ) |
| 24 | 23 | orbi2d | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( -. -u A e. RR \/ 0 <_ A ) <-> ( -. -u A e. RR \/ -. 0 < -u A ) ) ) |
| 25 | 17 24 | bitrd | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( A e. RR /\ 0 < A ) <-> ( -. -u A e. RR \/ -. 0 < -u A ) ) ) |
| 26 | ianor | |- ( -. ( -u A e. RR /\ 0 < -u A ) <-> ( -. -u A e. RR \/ -. 0 < -u A ) ) |
|
| 27 | 25 26 | bitr4di | |- ( ( A e. RR /\ A =/= 0 ) -> ( ( A e. RR /\ 0 < A ) <-> -. ( -u A e. RR /\ 0 < -u A ) ) ) |
| 28 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 29 | elrp | |- ( -u A e. RR+ <-> ( -u A e. RR /\ 0 < -u A ) ) |
|
| 30 | 29 | notbii | |- ( -. -u A e. RR+ <-> -. ( -u A e. RR /\ 0 < -u A ) ) |
| 31 | 27 28 30 | 3bitr4g | |- ( ( A e. RR /\ A =/= 0 ) -> ( A e. RR+ <-> -. -u A e. RR+ ) ) |