This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reim0b | |- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reim0 | |- ( A e. RR -> ( Im ` A ) = 0 ) |
|
| 2 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 3 | 2 | adantr | |- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 4 | oveq2 | |- ( ( Im ` A ) = 0 -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) |
|
| 5 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( ( Im ` A ) = 0 -> ( _i x. ( Im ` A ) ) = 0 ) |
| 7 | 6 | oveq2d | |- ( ( Im ` A ) = 0 -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) |
| 8 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 9 | 8 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 10 | 9 | addridd | |- ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
| 11 | 7 10 | sylan9eqr | |- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( Re ` A ) ) |
| 12 | 3 11 | eqtrd | |- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A = ( Re ` A ) ) |
| 13 | 8 | adantr | |- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> ( Re ` A ) e. RR ) |
| 14 | 12 13 | eqeltrd | |- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A e. RR ) |
| 15 | 14 | ex | |- ( A e. CC -> ( ( Im ` A ) = 0 -> A e. RR ) ) |
| 16 | 1 15 | impbid2 | |- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |