This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map x |-> -u x ). (Contributed by Mario Carneiro, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpart | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( - ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) = 0 ) | |
| 3 | 0le0 | ⊢ 0 ≤ 0 | |
| 4 | 2 3 | eqbrtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) ≤ 0 ) |
| 5 | 4 | biantrurd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∉ ℝ+ ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 6 | 1 5 | bitr3id | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ¬ - ( i · 𝐴 ) ∈ ℝ+ ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 7 | 6 | con1bid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ↔ - ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 8 | ax-icn | ⊢ i ∈ ℂ | |
| 9 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 11 | reim0b | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) |
| 13 | imre | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) | |
| 14 | 10 13 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) ) |
| 15 | ine0 | ⊢ i ≠ 0 | |
| 16 | divrec2 | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) | |
| 17 | 8 15 16 | mp3an23 | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) |
| 18 | 10 17 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( ( 1 / i ) · ( i · 𝐴 ) ) ) |
| 19 | irec | ⊢ ( 1 / i ) = - i | |
| 20 | 19 | oveq1i | ⊢ ( ( 1 / i ) · ( i · 𝐴 ) ) = ( - i · ( i · 𝐴 ) ) |
| 21 | 18 20 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = ( - i · ( i · 𝐴 ) ) ) |
| 22 | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( i · 𝐴 ) / i ) = 𝐴 ) | |
| 23 | 8 15 22 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) / i ) = 𝐴 ) |
| 24 | 21 23 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - i · ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 26 | 14 25 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ ( i · 𝐴 ) ) = 0 ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 28 | 12 27 | bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 29 | 28 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 31 | mulne0 | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( i · 𝐴 ) ≠ 0 ) | |
| 32 | 8 15 31 | mpanl12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( i · 𝐴 ) ≠ 0 ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ≠ 0 ) |
| 34 | rpneg | ⊢ ( ( ( i · 𝐴 ) ∈ ℝ ∧ ( i · 𝐴 ) ≠ 0 ) → ( ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) ) | |
| 35 | 30 33 34 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ - ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 36 | 35 | con2bid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∈ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 37 | df-nel | ⊢ ( ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) | |
| 38 | 36 37 | bitr4di | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - ( i · 𝐴 ) ∈ ℝ+ ↔ ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 39 | 3 2 | breqtrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 40 | 39 | biantrurd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · 𝐴 ) ∉ ℝ+ ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 41 | 7 38 40 | 3bitrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 42 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 0 ) ) |
| 43 | 42 | necon3bbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) |
| 44 | 43 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐴 ) ∈ ℝ ) |
| 45 | rpre | ⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ∈ ℝ ) | |
| 46 | 44 45 | nsyl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 47 | 46 37 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( i · 𝐴 ) ∉ ℝ+ ) |
| 48 | 47 | biantrud | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 49 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) | |
| 50 | 49 | biantrud | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) ) |
| 51 | 0re | ⊢ 0 ∈ ℝ | |
| 52 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 53 | ltlen | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ) ) | |
| 54 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) | |
| 55 | 53 54 | bitr3d | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 56 | 51 52 55 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 58 | 50 57 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 59 | 48 58 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 60 | renegcl | ⊢ ( - ( i · 𝐴 ) ∈ ℝ → - - ( i · 𝐴 ) ∈ ℝ ) | |
| 61 | 10 | negnegd | ⊢ ( 𝐴 ∈ ℂ → - - ( i · 𝐴 ) = ( i · 𝐴 ) ) |
| 62 | 61 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( - - ( i · 𝐴 ) ∈ ℝ ↔ ( i · 𝐴 ) ∈ ℝ ) ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - - ( i · 𝐴 ) ∈ ℝ ↔ ( i · 𝐴 ) ∈ ℝ ) ) |
| 64 | 60 63 | imbitrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( - ( i · 𝐴 ) ∈ ℝ → ( i · 𝐴 ) ∈ ℝ ) ) |
| 65 | 44 64 | mtod | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ - ( i · 𝐴 ) ∈ ℝ ) |
| 66 | rpre | ⊢ ( - ( i · 𝐴 ) ∈ ℝ+ → - ( i · 𝐴 ) ∈ ℝ ) | |
| 67 | 65 66 | nsyl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ¬ - ( i · 𝐴 ) ∈ ℝ+ ) |
| 68 | 67 1 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → - ( i · 𝐴 ) ∉ ℝ+ ) |
| 69 | 68 | biantrud | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 70 | 69 | notbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ¬ ( ℜ ‘ 𝐴 ) ≤ 0 ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 71 | 59 70 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 72 | 41 71 | pm2.61dane | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 73 | reneg | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) | |
| 74 | 73 | breq2d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℜ ‘ - 𝐴 ) ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 75 | 52 | le0neg1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 76 | 74 75 | bitr4d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ℜ ‘ - 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 0 ) ) |
| 77 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 78 | 8 77 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 79 | neleq1 | ⊢ ( ( i · - 𝐴 ) = - ( i · 𝐴 ) → ( ( i · - 𝐴 ) ∉ ℝ+ ↔ - ( i · 𝐴 ) ∉ ℝ+ ) ) | |
| 80 | 78 79 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) ∉ ℝ+ ↔ - ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 81 | 76 80 | anbi12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 82 | 81 | notbid | ⊢ ( 𝐴 ∈ ℂ → ( ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( ( ℜ ‘ 𝐴 ) ≤ 0 ∧ - ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 84 | 72 83 | bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ↔ ¬ ( 0 ≤ ( ℜ ‘ - 𝐴 ) ∧ ( i · - 𝐴 ) ∉ ℝ+ ) ) ) |