This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by the topology J on the empty set. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rest0 | |- ( J e. Top -> ( J |`t (/) ) = { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | restval | |- ( ( J e. Top /\ (/) e. _V ) -> ( J |`t (/) ) = ran ( x e. J |-> ( x i^i (/) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( J e. Top -> ( J |`t (/) ) = ran ( x e. J |-> ( x i^i (/) ) ) ) |
| 4 | in0 | |- ( x i^i (/) ) = (/) |
|
| 5 | 1 | elsn2 | |- ( ( x i^i (/) ) e. { (/) } <-> ( x i^i (/) ) = (/) ) |
| 6 | 4 5 | mpbir | |- ( x i^i (/) ) e. { (/) } |
| 7 | 6 | a1i | |- ( ( J e. Top /\ x e. J ) -> ( x i^i (/) ) e. { (/) } ) |
| 8 | 7 | fmpttd | |- ( J e. Top -> ( x e. J |-> ( x i^i (/) ) ) : J --> { (/) } ) |
| 9 | 8 | frnd | |- ( J e. Top -> ran ( x e. J |-> ( x i^i (/) ) ) C_ { (/) } ) |
| 10 | 3 9 | eqsstrd | |- ( J e. Top -> ( J |`t (/) ) C_ { (/) } ) |
| 11 | resttop | |- ( ( J e. Top /\ (/) e. _V ) -> ( J |`t (/) ) e. Top ) |
|
| 12 | 1 11 | mpan2 | |- ( J e. Top -> ( J |`t (/) ) e. Top ) |
| 13 | 0opn | |- ( ( J |`t (/) ) e. Top -> (/) e. ( J |`t (/) ) ) |
|
| 14 | 12 13 | syl | |- ( J e. Top -> (/) e. ( J |`t (/) ) ) |
| 15 | 14 | snssd | |- ( J e. Top -> { (/) } C_ ( J |`t (/) ) ) |
| 16 | 10 15 | eqssd | |- ( J e. Top -> ( J |`t (/) ) = { (/) } ) |