This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfdmsn | |- ( ( A e. CC /\ B e. CC ) -> ( x e. { A } |-> B ) e. ( { A } -cn-> { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfdmsn | |- ( ( A e. CC /\ B e. CC ) -> ( x e. { A } |-> B ) e. ( ~P { A } Cn ~P { B } ) ) |
|
| 2 | snssi | |- ( A e. CC -> { A } C_ CC ) |
|
| 3 | snssi | |- ( B e. CC -> { B } C_ CC ) |
|
| 4 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 5 | eqid | |- ( ( TopOpen ` CCfld ) |`t { A } ) = ( ( TopOpen ` CCfld ) |`t { A } ) |
|
| 6 | eqid | |- ( ( TopOpen ` CCfld ) |`t { B } ) = ( ( TopOpen ` CCfld ) |`t { B } ) |
|
| 7 | 4 5 6 | cncfcn | |- ( ( { A } C_ CC /\ { B } C_ CC ) -> ( { A } -cn-> { B } ) = ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) ) |
| 8 | 2 3 7 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( { A } -cn-> { B } ) = ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) ) |
| 9 | 4 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 10 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 11 | restsn2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A e. CC ) -> ( ( TopOpen ` CCfld ) |`t { A } ) = ~P { A } ) |
|
| 12 | 9 10 11 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { A } ) = ~P { A } ) |
| 13 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 14 | restsn2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { B } ) = ~P { B } ) |
|
| 15 | 9 13 14 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { B } ) = ~P { B } ) |
| 16 | 12 15 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) = ( ~P { A } Cn ~P { B } ) ) |
| 17 | 8 16 | eqtr2d | |- ( ( A e. CC /\ B e. CC ) -> ( ~P { A } Cn ~P { B } ) = ( { A } -cn-> { B } ) ) |
| 18 | 1 17 | eleqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( x e. { A } |-> B ) e. ( { A } -cn-> { B } ) ) |