This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfiooiccre.x | |- F/ x ph |
|
| cncfiooiccre.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
||
| cncfiooiccre.a | |- ( ph -> A e. RR ) |
||
| cncfiooiccre.b | |- ( ph -> B e. RR ) |
||
| cncfiooiccre.altb | |- ( ph -> A < B ) |
||
| cncfiooiccre.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
||
| cncfiooiccre.l | |- ( ph -> L e. ( F limCC B ) ) |
||
| cncfiooiccre.r | |- ( ph -> R e. ( F limCC A ) ) |
||
| Assertion | cncfiooiccre | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfiooiccre.x | |- F/ x ph |
|
| 2 | cncfiooiccre.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 3 | cncfiooiccre.a | |- ( ph -> A e. RR ) |
|
| 4 | cncfiooiccre.b | |- ( ph -> B e. RR ) |
|
| 5 | cncfiooiccre.altb | |- ( ph -> A < B ) |
|
| 6 | cncfiooiccre.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
|
| 7 | cncfiooiccre.l | |- ( ph -> L e. ( F limCC B ) ) |
|
| 8 | cncfiooiccre.r | |- ( ph -> R e. ( F limCC A ) ) |
|
| 9 | iftrue | |- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 11 | cncff | |- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
|
| 12 | 6 11 | syl | |- ( ph -> F : ( A (,) B ) --> RR ) |
| 13 | ioosscn | |- ( A (,) B ) C_ CC |
|
| 14 | 13 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 15 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 16 | 4 | rexrd | |- ( ph -> B e. RR* ) |
| 17 | 15 16 3 5 | lptioo1cn | |- ( ph -> A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
| 18 | 12 14 17 8 | limcrecl | |- ( ph -> R e. RR ) |
| 19 | 18 | adantr | |- ( ( ph /\ x = A ) -> R e. RR ) |
| 20 | 10 19 | eqeltrd | |- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 21 | 20 | adantlr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 22 | iffalse | |- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
|
| 23 | iftrue | |- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
|
| 24 | 22 23 | sylan9eq | |- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 25 | 24 | adantll | |- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 26 | 3 | rexrd | |- ( ph -> A e. RR* ) |
| 27 | 15 26 4 5 | lptioo2cn | |- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
| 28 | 12 14 27 7 | limcrecl | |- ( ph -> L e. RR ) |
| 29 | 28 | ad2antrr | |- ( ( ( ph /\ -. x = A ) /\ x = B ) -> L e. RR ) |
| 30 | 25 29 | eqeltrd | |- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 31 | 30 | adantllr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 32 | iffalse | |- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
|
| 33 | 22 32 | sylan9eq | |- ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 34 | 33 | adantll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 35 | 12 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> F : ( A (,) B ) --> RR ) |
| 36 | 26 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
| 37 | 16 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
| 38 | 3 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 39 | 4 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 40 | simpr | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 41 | eliccre | |- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
|
| 42 | 38 39 40 41 | syl3anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 43 | 42 | ad2antrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
| 44 | 3 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
| 45 | 42 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
| 46 | 26 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR* ) |
| 47 | 16 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> B e. RR* ) |
| 48 | 40 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. ( A [,] B ) ) |
| 49 | iccgelb | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
|
| 50 | 46 47 48 49 | syl3anc | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
| 51 | neqne | |- ( -. x = A -> x =/= A ) |
|
| 52 | 51 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
| 53 | 44 45 50 52 | leneltd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
| 54 | 53 | adantr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
| 55 | 42 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
| 56 | 4 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
| 57 | 26 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> A e. RR* ) |
| 58 | 16 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR* ) |
| 59 | 40 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. ( A [,] B ) ) |
| 60 | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
|
| 61 | 57 58 59 60 | syl3anc | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
| 62 | neqne | |- ( -. x = B -> x =/= B ) |
|
| 63 | 62 | necomd | |- ( -. x = B -> B =/= x ) |
| 64 | 63 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
| 65 | 55 56 61 64 | leneltd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
| 66 | 65 | adantlr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
| 67 | 36 37 43 54 66 | eliood | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
| 68 | 35 67 | ffvelcdmd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. RR ) |
| 69 | 34 68 | eqeltrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 70 | 31 69 | pm2.61dan | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 71 | 21 70 | pm2.61dan | |- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
| 72 | 71 2 | fmptd | |- ( ph -> G : ( A [,] B ) --> RR ) |
| 73 | ax-resscn | |- RR C_ CC |
|
| 74 | ssid | |- CC C_ CC |
|
| 75 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
|
| 76 | 73 74 75 | mp2an | |- ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) |
| 77 | 76 6 | sselid | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 78 | 1 2 3 4 77 7 8 | cncfiooicc | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 79 | cncfcdm | |- ( ( RR C_ CC /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) ) |
|
| 80 | 73 78 79 | sylancr | |- ( ph -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) ) |
| 81 | 72 80 | mpbird | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |