This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. ( lmodvsneg analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsneg.b | |- B = ( Base ` W ) |
|
| clmvsneg.f | |- F = ( Scalar ` W ) |
||
| clmvsneg.s | |- .x. = ( .s ` W ) |
||
| clmvsneg.n | |- N = ( invg ` W ) |
||
| clmvsneg.k | |- K = ( Base ` F ) |
||
| clmvsneg.w | |- ( ph -> W e. CMod ) |
||
| clmvsneg.x | |- ( ph -> X e. B ) |
||
| clmvsneg.r | |- ( ph -> R e. K ) |
||
| Assertion | clmvsneg | |- ( ph -> ( N ` ( R .x. X ) ) = ( -u R .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsneg.b | |- B = ( Base ` W ) |
|
| 2 | clmvsneg.f | |- F = ( Scalar ` W ) |
|
| 3 | clmvsneg.s | |- .x. = ( .s ` W ) |
|
| 4 | clmvsneg.n | |- N = ( invg ` W ) |
|
| 5 | clmvsneg.k | |- K = ( Base ` F ) |
|
| 6 | clmvsneg.w | |- ( ph -> W e. CMod ) |
|
| 7 | clmvsneg.x | |- ( ph -> X e. B ) |
|
| 8 | clmvsneg.r | |- ( ph -> R e. K ) |
|
| 9 | eqid | |- ( invg ` F ) = ( invg ` F ) |
|
| 10 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 11 | 6 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | 1 2 3 4 5 9 11 7 8 | lmodvsneg | |- ( ph -> ( N ` ( R .x. X ) ) = ( ( ( invg ` F ) ` R ) .x. X ) ) |
| 13 | 2 5 | clmneg | |- ( ( W e. CMod /\ R e. K ) -> -u R = ( ( invg ` F ) ` R ) ) |
| 14 | 6 8 13 | syl2anc | |- ( ph -> -u R = ( ( invg ` F ) ` R ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( -u R .x. X ) = ( ( ( invg ` F ) ` R ) .x. X ) ) |
| 16 | 12 15 | eqtr4d | |- ( ph -> ( N ` ( R .x. X ) ) = ( -u R .x. X ) ) |