This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a successor, extended to NN0 . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0p1.b | |- B = ( Base ` G ) |
|
| mulgnn0p1.t | |- .x. = ( .g ` G ) |
||
| mulgnn0p1.p | |- .+ = ( +g ` G ) |
||
| Assertion | mulgnn0p1 | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0p1.b | |- B = ( Base ` G ) |
|
| 2 | mulgnn0p1.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnn0p1.p | |- .+ = ( +g ` G ) |
|
| 4 | simpr | |- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> N e. NN ) |
|
| 5 | simpl3 | |- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> X e. B ) |
|
| 6 | 1 2 3 | mulgnnp1 | |- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| 7 | 4 5 6 | syl2anc | |- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| 8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 9 | 1 3 8 | mndlid | |- ( ( G e. Mnd /\ X e. B ) -> ( ( 0g ` G ) .+ X ) = X ) |
| 10 | 1 8 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 11 | 10 | adantl | |- ( ( G e. Mnd /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 12 | 11 | oveq1d | |- ( ( G e. Mnd /\ X e. B ) -> ( ( 0 .x. X ) .+ X ) = ( ( 0g ` G ) .+ X ) ) |
| 13 | 1 2 | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| 14 | 13 | adantl | |- ( ( G e. Mnd /\ X e. B ) -> ( 1 .x. X ) = X ) |
| 15 | 9 12 14 | 3eqtr4rd | |- ( ( G e. Mnd /\ X e. B ) -> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) |
| 16 | 15 | 3adant2 | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) |
| 17 | oveq1 | |- ( N = 0 -> ( N + 1 ) = ( 0 + 1 ) ) |
|
| 18 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 19 | 17 18 | eqtr4di | |- ( N = 0 -> ( N + 1 ) = 1 ) |
| 20 | 19 | oveq1d | |- ( N = 0 -> ( ( N + 1 ) .x. X ) = ( 1 .x. X ) ) |
| 21 | oveq1 | |- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
|
| 22 | 21 | oveq1d | |- ( N = 0 -> ( ( N .x. X ) .+ X ) = ( ( 0 .x. X ) .+ X ) ) |
| 23 | 20 22 | eqeq12d | |- ( N = 0 -> ( ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) <-> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) ) |
| 24 | 16 23 | syl5ibrcom | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N = 0 -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) ) |
| 25 | 24 | imp | |- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N = 0 ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
| 26 | simp2 | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> N e. NN0 ) |
|
| 27 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 28 | 26 27 | sylib | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N e. NN \/ N = 0 ) ) |
| 29 | 7 25 28 | mpjaodan | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |