This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( lmod0vs analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0vs.v | |- V = ( Base ` W ) |
|
| clm0vs.f | |- F = ( Scalar ` W ) |
||
| clm0vs.s | |- .x. = ( .s ` W ) |
||
| clm0vs.z | |- .0. = ( 0g ` W ) |
||
| Assertion | clm0vs | |- ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0vs.v | |- V = ( Base ` W ) |
|
| 2 | clm0vs.f | |- F = ( Scalar ` W ) |
|
| 3 | clm0vs.s | |- .x. = ( .s ` W ) |
|
| 4 | clm0vs.z | |- .0. = ( 0g ` W ) |
|
| 5 | 2 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 6 | 5 | adantr | |- ( ( W e. CMod /\ X e. V ) -> 0 = ( 0g ` F ) ) |
| 7 | 6 | oveq1d | |- ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = ( ( 0g ` F ) .x. X ) ) |
| 8 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 9 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 10 | 1 2 3 9 4 | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) |
| 11 | 8 10 | sylan | |- ( ( W e. CMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) |
| 12 | 7 11 | eqtrd | |- ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = .0. ) |