This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( lmodsubdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmsubdir.v | |- V = ( Base ` W ) |
|
| clmsubdir.t | |- .x. = ( .s ` W ) |
||
| clmsubdir.f | |- F = ( Scalar ` W ) |
||
| clmsubdir.k | |- K = ( Base ` F ) |
||
| clmsubdir.m | |- .- = ( -g ` W ) |
||
| clmsubdir.w | |- ( ph -> W e. CMod ) |
||
| clmsubdir.a | |- ( ph -> A e. K ) |
||
| clmsubdir.b | |- ( ph -> B e. K ) |
||
| clmsubdir.x | |- ( ph -> X e. V ) |
||
| Assertion | clmsubdir | |- ( ph -> ( ( A - B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmsubdir.v | |- V = ( Base ` W ) |
|
| 2 | clmsubdir.t | |- .x. = ( .s ` W ) |
|
| 3 | clmsubdir.f | |- F = ( Scalar ` W ) |
|
| 4 | clmsubdir.k | |- K = ( Base ` F ) |
|
| 5 | clmsubdir.m | |- .- = ( -g ` W ) |
|
| 6 | clmsubdir.w | |- ( ph -> W e. CMod ) |
|
| 7 | clmsubdir.a | |- ( ph -> A e. K ) |
|
| 8 | clmsubdir.b | |- ( ph -> B e. K ) |
|
| 9 | clmsubdir.x | |- ( ph -> X e. V ) |
|
| 10 | 3 4 | clmsub | |- ( ( W e. CMod /\ A e. K /\ B e. K ) -> ( A - B ) = ( A ( -g ` F ) B ) ) |
| 11 | 6 7 8 10 | syl3anc | |- ( ph -> ( A - B ) = ( A ( -g ` F ) B ) ) |
| 12 | 11 | oveq1d | |- ( ph -> ( ( A - B ) .x. X ) = ( ( A ( -g ` F ) B ) .x. X ) ) |
| 13 | eqid | |- ( -g ` F ) = ( -g ` F ) |
|
| 14 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 15 | 6 14 | syl | |- ( ph -> W e. LMod ) |
| 16 | 1 2 3 4 5 13 15 7 8 9 | lmodsubdir | |- ( ph -> ( ( A ( -g ` F ) B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |
| 17 | 12 16 | eqtrd | |- ( ph -> ( ( A - B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |