This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product with ring unity. ( lmodvs1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvs1.v | |- V = ( Base ` W ) |
|
| clmvs1.s | |- .x. = ( .s ` W ) |
||
| Assertion | clmvs1 | |- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvs1.v | |- V = ( Base ` W ) |
|
| 2 | clmvs1.s | |- .x. = ( .s ` W ) |
|
| 3 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 4 | 3 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
| 5 | 4 | adantr | |- ( ( W e. CMod /\ X e. V ) -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
| 6 | 5 | oveq1d | |- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = ( ( 1r ` ( Scalar ` W ) ) .x. X ) ) |
| 7 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 8 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 9 | 1 3 2 8 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) |
| 10 | 7 9 | sylan | |- ( ( W e. CMod /\ X e. V ) -> ( ( 1r ` ( Scalar ` W ) ) .x. X ) = X ) |
| 11 | 6 10 | eqtrd | |- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |