This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (right-distributivity). ( lmodvsdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | |- V = ( Base ` W ) |
|
| clmvscl.f | |- F = ( Scalar ` W ) |
||
| clmvscl.s | |- .x. = ( .s ` W ) |
||
| clmvscl.k | |- K = ( Base ` F ) |
||
| clmvsdir.a | |- .+ = ( +g ` W ) |
||
| Assertion | clmvsdir | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | |- V = ( Base ` W ) |
|
| 2 | clmvscl.f | |- F = ( Scalar ` W ) |
|
| 3 | clmvscl.s | |- .x. = ( .s ` W ) |
|
| 4 | clmvscl.k | |- K = ( Base ` F ) |
|
| 5 | clmvsdir.a | |- .+ = ( +g ` W ) |
|
| 6 | 2 | clmadd | |- ( W e. CMod -> + = ( +g ` F ) ) |
| 7 | 6 | oveqd | |- ( W e. CMod -> ( Q + R ) = ( Q ( +g ` F ) R ) ) |
| 8 | 7 | oveq1d | |- ( W e. CMod -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) |
| 9 | 8 | adantr | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) |
| 10 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 11 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 12 | 1 5 2 3 4 11 | lmodvsdir | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 13 | 10 12 | sylan | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 14 | 9 13 | eqtrd | |- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |