This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009) (Proof shortened by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zindd.1 | |- ( x = 0 -> ( ph <-> ps ) ) |
|
| zindd.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| zindd.3 | |- ( x = ( y + 1 ) -> ( ph <-> ta ) ) |
||
| zindd.4 | |- ( x = -u y -> ( ph <-> th ) ) |
||
| zindd.5 | |- ( x = A -> ( ph <-> et ) ) |
||
| zindd.6 | |- ( ze -> ps ) |
||
| zindd.7 | |- ( ze -> ( y e. NN0 -> ( ch -> ta ) ) ) |
||
| zindd.8 | |- ( ze -> ( y e. NN -> ( ch -> th ) ) ) |
||
| Assertion | zindd | |- ( ze -> ( A e. ZZ -> et ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zindd.1 | |- ( x = 0 -> ( ph <-> ps ) ) |
|
| 2 | zindd.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | zindd.3 | |- ( x = ( y + 1 ) -> ( ph <-> ta ) ) |
|
| 4 | zindd.4 | |- ( x = -u y -> ( ph <-> th ) ) |
|
| 5 | zindd.5 | |- ( x = A -> ( ph <-> et ) ) |
|
| 6 | zindd.6 | |- ( ze -> ps ) |
|
| 7 | zindd.7 | |- ( ze -> ( y e. NN0 -> ( ch -> ta ) ) ) |
|
| 8 | zindd.8 | |- ( ze -> ( y e. NN -> ( ch -> th ) ) ) |
|
| 9 | znegcl | |- ( y e. ZZ -> -u y e. ZZ ) |
|
| 10 | elznn0nn | |- ( -u y e. ZZ <-> ( -u y e. NN0 \/ ( -u y e. RR /\ -u -u y e. NN ) ) ) |
|
| 11 | 9 10 | sylib | |- ( y e. ZZ -> ( -u y e. NN0 \/ ( -u y e. RR /\ -u -u y e. NN ) ) ) |
| 12 | simpr | |- ( ( -u y e. RR /\ -u -u y e. NN ) -> -u -u y e. NN ) |
|
| 13 | 12 | orim2i | |- ( ( -u y e. NN0 \/ ( -u y e. RR /\ -u -u y e. NN ) ) -> ( -u y e. NN0 \/ -u -u y e. NN ) ) |
| 14 | 11 13 | syl | |- ( y e. ZZ -> ( -u y e. NN0 \/ -u -u y e. NN ) ) |
| 15 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 16 | 15 | negnegd | |- ( y e. ZZ -> -u -u y = y ) |
| 17 | 16 | eleq1d | |- ( y e. ZZ -> ( -u -u y e. NN <-> y e. NN ) ) |
| 18 | 17 | orbi2d | |- ( y e. ZZ -> ( ( -u y e. NN0 \/ -u -u y e. NN ) <-> ( -u y e. NN0 \/ y e. NN ) ) ) |
| 19 | 14 18 | mpbid | |- ( y e. ZZ -> ( -u y e. NN0 \/ y e. NN ) ) |
| 20 | 1 | imbi2d | |- ( x = 0 -> ( ( ze -> ph ) <-> ( ze -> ps ) ) ) |
| 21 | 2 | imbi2d | |- ( x = y -> ( ( ze -> ph ) <-> ( ze -> ch ) ) ) |
| 22 | 3 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ze -> ph ) <-> ( ze -> ta ) ) ) |
| 23 | 4 | imbi2d | |- ( x = -u y -> ( ( ze -> ph ) <-> ( ze -> th ) ) ) |
| 24 | 7 | com12 | |- ( y e. NN0 -> ( ze -> ( ch -> ta ) ) ) |
| 25 | 24 | a2d | |- ( y e. NN0 -> ( ( ze -> ch ) -> ( ze -> ta ) ) ) |
| 26 | 20 21 22 23 6 25 | nn0ind | |- ( -u y e. NN0 -> ( ze -> th ) ) |
| 27 | 26 | com12 | |- ( ze -> ( -u y e. NN0 -> th ) ) |
| 28 | 20 21 22 21 6 25 | nn0ind | |- ( y e. NN0 -> ( ze -> ch ) ) |
| 29 | nnnn0 | |- ( y e. NN -> y e. NN0 ) |
|
| 30 | 28 29 | syl11 | |- ( ze -> ( y e. NN -> ch ) ) |
| 31 | 30 8 | mpdd | |- ( ze -> ( y e. NN -> th ) ) |
| 32 | 27 31 | jaod | |- ( ze -> ( ( -u y e. NN0 \/ y e. NN ) -> th ) ) |
| 33 | 19 32 | syl5 | |- ( ze -> ( y e. ZZ -> th ) ) |
| 34 | 33 | ralrimiv | |- ( ze -> A. y e. ZZ th ) |
| 35 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 36 | negeq | |- ( y = -u x -> -u y = -u -u x ) |
|
| 37 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 38 | 37 | negnegd | |- ( x e. ZZ -> -u -u x = x ) |
| 39 | 36 38 | sylan9eqr | |- ( ( x e. ZZ /\ y = -u x ) -> -u y = x ) |
| 40 | 39 | eqcomd | |- ( ( x e. ZZ /\ y = -u x ) -> x = -u y ) |
| 41 | 40 4 | syl | |- ( ( x e. ZZ /\ y = -u x ) -> ( ph <-> th ) ) |
| 42 | 41 | bicomd | |- ( ( x e. ZZ /\ y = -u x ) -> ( th <-> ph ) ) |
| 43 | 35 42 | rspcdv | |- ( x e. ZZ -> ( A. y e. ZZ th -> ph ) ) |
| 44 | 43 | com12 | |- ( A. y e. ZZ th -> ( x e. ZZ -> ph ) ) |
| 45 | 44 | ralrimiv | |- ( A. y e. ZZ th -> A. x e. ZZ ph ) |
| 46 | 5 | rspccv | |- ( A. x e. ZZ ph -> ( A e. ZZ -> et ) ) |
| 47 | 34 45 46 | 3syl | |- ( ze -> ( A e. ZZ -> et ) ) |