This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chlim.1 | |- A e. _V |
|
| Assertion | chlimi | |- ( ( H e. CH /\ F : NN --> H /\ F ~~>v A ) -> A e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chlim.1 | |- A e. _V |
|
| 2 | isch2 | |- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
|
| 3 | 2 | simprbi | |- ( H e. CH -> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 4 | nnex | |- NN e. _V |
|
| 5 | fex | |- ( ( F : NN --> H /\ NN e. _V ) -> F e. _V ) |
|
| 6 | 4 5 | mpan2 | |- ( F : NN --> H -> F e. _V ) |
| 7 | 6 | adantr | |- ( ( F : NN --> H /\ F ~~>v A ) -> F e. _V ) |
| 8 | feq1 | |- ( f = F -> ( f : NN --> H <-> F : NN --> H ) ) |
|
| 9 | breq1 | |- ( f = F -> ( f ~~>v x <-> F ~~>v x ) ) |
|
| 10 | 8 9 | anbi12d | |- ( f = F -> ( ( f : NN --> H /\ f ~~>v x ) <-> ( F : NN --> H /\ F ~~>v x ) ) ) |
| 11 | 10 | imbi1d | |- ( f = F -> ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
| 12 | 11 | albidv | |- ( f = F -> ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
| 13 | 12 | spcgv | |- ( F e. _V -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
| 14 | breq2 | |- ( x = A -> ( F ~~>v x <-> F ~~>v A ) ) |
|
| 15 | 14 | anbi2d | |- ( x = A -> ( ( F : NN --> H /\ F ~~>v x ) <-> ( F : NN --> H /\ F ~~>v A ) ) ) |
| 16 | eleq1 | |- ( x = A -> ( x e. H <-> A e. H ) ) |
|
| 17 | 15 16 | imbi12d | |- ( x = A -> ( ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) <-> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
| 18 | 1 17 | spcv | |- ( A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
| 19 | 13 18 | syl6 | |- ( F e. _V -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
| 20 | 7 19 | syl | |- ( ( F : NN --> H /\ F ~~>v A ) -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
| 21 | 20 | pm2.43b | |- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
| 22 | 3 21 | syl | |- ( H e. CH -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
| 23 | 22 | 3impib | |- ( ( H e. CH /\ F : NN --> H /\ F ~~>v A ) -> A e. H ) |