This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlimadd.3 | |- ( ph -> F : NN --> ~H ) |
|
| hlimadd.4 | |- ( ph -> G : NN --> ~H ) |
||
| hlimadd.5 | |- ( ph -> F ~~>v A ) |
||
| hlimadd.6 | |- ( ph -> G ~~>v B ) |
||
| hlimadd.7 | |- H = ( n e. NN |-> ( ( F ` n ) +h ( G ` n ) ) ) |
||
| Assertion | hlimadd | |- ( ph -> H ~~>v ( A +h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlimadd.3 | |- ( ph -> F : NN --> ~H ) |
|
| 2 | hlimadd.4 | |- ( ph -> G : NN --> ~H ) |
|
| 3 | hlimadd.5 | |- ( ph -> F ~~>v A ) |
|
| 4 | hlimadd.6 | |- ( ph -> G ~~>v B ) |
|
| 5 | hlimadd.7 | |- H = ( n e. NN |-> ( ( F ` n ) +h ( G ` n ) ) ) |
|
| 6 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ~H ) |
| 7 | 2 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ~H ) |
| 8 | hvaddcl | |- ( ( ( F ` n ) e. ~H /\ ( G ` n ) e. ~H ) -> ( ( F ` n ) +h ( G ` n ) ) e. ~H ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) +h ( G ` n ) ) e. ~H ) |
| 10 | 9 5 | fmptd | |- ( ph -> H : NN --> ~H ) |
| 11 | ax-hilex | |- ~H e. _V |
|
| 12 | nnex | |- NN e. _V |
|
| 13 | 11 12 | elmap | |- ( H e. ( ~H ^m NN ) <-> H : NN --> ~H ) |
| 14 | 10 13 | sylibr | |- ( ph -> H e. ( ~H ^m NN ) ) |
| 15 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 16 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 17 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 18 | eqid | |- ( normh o. -h ) = ( normh o. -h ) |
|
| 19 | 17 18 | hhims | |- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 20 | 17 19 | hhxmet | |- ( normh o. -h ) e. ( *Met ` ~H ) |
| 21 | eqid | |- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
|
| 22 | 21 | mopntopon | |- ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
| 23 | 20 22 | mp1i | |- ( ph -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) |
| 24 | 17 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 25 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 26 | 17 24 25 19 21 | h2hlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
| 27 | resss | |- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
|
| 28 | 26 27 | eqsstri | |- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 29 | 28 | ssbri | |- ( F ~~>v A -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) A ) |
| 30 | 3 29 | syl | |- ( ph -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) A ) |
| 31 | 28 | ssbri | |- ( G ~~>v B -> G ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) B ) |
| 32 | 4 31 | syl | |- ( ph -> G ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) B ) |
| 33 | 17 | hhva | |- +h = ( +v ` <. <. +h , .h >. , normh >. ) |
| 34 | 19 21 33 | vacn | |- ( <. <. +h , .h >. , normh >. e. NrmCVec -> +h e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
| 35 | 24 34 | mp1i | |- ( ph -> +h e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) |
| 36 | 15 16 23 23 1 2 30 32 35 5 | lmcn2 | |- ( ph -> H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) |
| 37 | 26 | breqi | |- ( H ~~>v ( A +h B ) <-> H ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) ( A +h B ) ) |
| 38 | ovex | |- ( A +h B ) e. _V |
|
| 39 | 38 | brresi | |- ( H ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) ( A +h B ) <-> ( H e. ( ~H ^m NN ) /\ H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) ) |
| 40 | 37 39 | bitri | |- ( H ~~>v ( A +h B ) <-> ( H e. ( ~H ^m NN ) /\ H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) ) |
| 41 | 14 36 40 | sylanbrc | |- ( ph -> H ~~>v ( A +h B ) ) |