This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004) (Revised by Mario Carneiro, 29-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsval | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( +h " ( A X. B ) ) ) |
|
| 2 | 1 | eleq2d | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> C e. ( +h " ( A X. B ) ) ) ) |
| 3 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 4 | ffn | |- ( +h : ( ~H X. ~H ) --> ~H -> +h Fn ( ~H X. ~H ) ) |
|
| 5 | 3 4 | ax-mp | |- +h Fn ( ~H X. ~H ) |
| 6 | shss | |- ( A e. SH -> A C_ ~H ) |
|
| 7 | shss | |- ( B e. SH -> B C_ ~H ) |
|
| 8 | xpss12 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A X. B ) C_ ( ~H X. ~H ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. SH /\ B e. SH ) -> ( A X. B ) C_ ( ~H X. ~H ) ) |
| 10 | ovelimab | |- ( ( +h Fn ( ~H X. ~H ) /\ ( A X. B ) C_ ( ~H X. ~H ) ) -> ( C e. ( +h " ( A X. B ) ) <-> E. x e. A E. y e. B C = ( x +h y ) ) ) |
|
| 11 | 5 9 10 | sylancr | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( +h " ( A X. B ) ) <-> E. x e. A E. y e. B C = ( x +h y ) ) ) |
| 12 | 2 11 | bitrd | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) ) |