This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issmo2 | |- ( F : A --> B -> ( ( B C_ On /\ Ord A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) -> Smo F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss | |- ( ( F : A --> B /\ B C_ On ) -> F : A --> On ) |
|
| 2 | 1 | ex | |- ( F : A --> B -> ( B C_ On -> F : A --> On ) ) |
| 3 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 4 | 3 | feq2d | |- ( F : A --> B -> ( F : dom F --> On <-> F : A --> On ) ) |
| 5 | 2 4 | sylibrd | |- ( F : A --> B -> ( B C_ On -> F : dom F --> On ) ) |
| 6 | ordeq | |- ( dom F = A -> ( Ord dom F <-> Ord A ) ) |
|
| 7 | 3 6 | syl | |- ( F : A --> B -> ( Ord dom F <-> Ord A ) ) |
| 8 | 7 | biimprd | |- ( F : A --> B -> ( Ord A -> Ord dom F ) ) |
| 9 | 3 | raleqdv | |- ( F : A --> B -> ( A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) <-> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
| 10 | 9 | biimprd | |- ( F : A --> B -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
| 11 | 5 8 10 | 3anim123d | |- ( F : A --> B -> ( ( B C_ On /\ Ord A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) -> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) ) |
| 12 | dfsmo2 | |- ( Smo F <-> ( F : dom F --> On /\ Ord dom F /\ A. x e. dom F A. y e. x ( F ` y ) e. ( F ` x ) ) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( F : A --> B -> ( ( B C_ On /\ Ord A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) -> Smo F ) ) |