This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a cofinal map from B to A , then B is at least ( cfA ) . This theorem and cff1 motivate the picture of ( cfA ) as the greatest lower bound of the domain of cofinal maps into A . (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfflb | |- ( ( A e. On /\ B e. On ) -> ( E. f ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( cf ` A ) C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | |- ( f : B --> A -> ran f C_ A ) |
|
| 2 | 1 | adantr | |- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ran f C_ A ) |
| 3 | ffn | |- ( f : B --> A -> f Fn B ) |
|
| 4 | fnfvelrn | |- ( ( f Fn B /\ w e. B ) -> ( f ` w ) e. ran f ) |
|
| 5 | 3 4 | sylan | |- ( ( f : B --> A /\ w e. B ) -> ( f ` w ) e. ran f ) |
| 6 | sseq2 | |- ( s = ( f ` w ) -> ( z C_ s <-> z C_ ( f ` w ) ) ) |
|
| 7 | 6 | rspcev | |- ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. s e. ran f z C_ s ) |
| 8 | 5 7 | sylan | |- ( ( ( f : B --> A /\ w e. B ) /\ z C_ ( f ` w ) ) -> E. s e. ran f z C_ s ) |
| 9 | 8 | rexlimdva2 | |- ( f : B --> A -> ( E. w e. B z C_ ( f ` w ) -> E. s e. ran f z C_ s ) ) |
| 10 | 9 | ralimdv | |- ( f : B --> A -> ( A. z e. A E. w e. B z C_ ( f ` w ) -> A. z e. A E. s e. ran f z C_ s ) ) |
| 11 | 10 | imp | |- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> A. z e. A E. s e. ran f z C_ s ) |
| 12 | 2 11 | jca | |- ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) |
| 13 | fvex | |- ( card ` ran f ) e. _V |
|
| 14 | cfval | |- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
|
| 15 | 14 | adantr | |- ( ( A e. On /\ B e. On ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
| 16 | 15 | 3ad2ant2 | |- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
| 17 | vex | |- f e. _V |
|
| 18 | 17 | rnex | |- ran f e. _V |
| 19 | fveq2 | |- ( y = ran f -> ( card ` y ) = ( card ` ran f ) ) |
|
| 20 | 19 | eqeq2d | |- ( y = ran f -> ( x = ( card ` y ) <-> x = ( card ` ran f ) ) ) |
| 21 | sseq1 | |- ( y = ran f -> ( y C_ A <-> ran f C_ A ) ) |
|
| 22 | rexeq | |- ( y = ran f -> ( E. s e. y z C_ s <-> E. s e. ran f z C_ s ) ) |
|
| 23 | 22 | ralbidv | |- ( y = ran f -> ( A. z e. A E. s e. y z C_ s <-> A. z e. A E. s e. ran f z C_ s ) ) |
| 24 | 21 23 | anbi12d | |- ( y = ran f -> ( ( y C_ A /\ A. z e. A E. s e. y z C_ s ) <-> ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) ) |
| 25 | 20 24 | anbi12d | |- ( y = ran f -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) <-> ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) ) ) |
| 26 | 18 25 | spcev | |- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) ) |
| 27 | abid | |- ( x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } <-> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) ) |
|
| 28 | 26 27 | sylibr | |- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } ) |
| 29 | intss1 | |- ( x e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
|
| 30 | 28 29 | syl | |- ( ( x = ( card ` ran f ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
| 31 | 30 | 3adant2 | |- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. s e. y z C_ s ) ) } C_ x ) |
| 32 | 16 31 | eqsstrd | |- ( ( x = ( card ` ran f ) /\ ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ x ) |
| 33 | 32 | 3expib | |- ( x = ( card ` ran f ) -> ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ x ) ) |
| 34 | sseq2 | |- ( x = ( card ` ran f ) -> ( ( cf ` A ) C_ x <-> ( cf ` A ) C_ ( card ` ran f ) ) ) |
|
| 35 | 33 34 | sylibd | |- ( x = ( card ` ran f ) -> ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) ) |
| 36 | 13 35 | vtocle | |- ( ( ( A e. On /\ B e. On ) /\ ( ran f C_ A /\ A. z e. A E. s e. ran f z C_ s ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) |
| 37 | 12 36 | sylan2 | |- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( cf ` A ) C_ ( card ` ran f ) ) |
| 38 | cardidm | |- ( card ` ( card ` ran f ) ) = ( card ` ran f ) |
|
| 39 | onss | |- ( A e. On -> A C_ On ) |
|
| 40 | 1 39 | sylan9ssr | |- ( ( A e. On /\ f : B --> A ) -> ran f C_ On ) |
| 41 | 40 | 3adant2 | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f C_ On ) |
| 42 | onssnum | |- ( ( ran f e. _V /\ ran f C_ On ) -> ran f e. dom card ) |
|
| 43 | 18 41 42 | sylancr | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f e. dom card ) |
| 44 | cardid2 | |- ( ran f e. dom card -> ( card ` ran f ) ~~ ran f ) |
|
| 45 | 43 44 | syl | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) ~~ ran f ) |
| 46 | onenon | |- ( B e. On -> B e. dom card ) |
|
| 47 | dffn4 | |- ( f Fn B <-> f : B -onto-> ran f ) |
|
| 48 | 3 47 | sylib | |- ( f : B --> A -> f : B -onto-> ran f ) |
| 49 | fodomnum | |- ( B e. dom card -> ( f : B -onto-> ran f -> ran f ~<_ B ) ) |
|
| 50 | 46 48 49 | syl2im | |- ( B e. On -> ( f : B --> A -> ran f ~<_ B ) ) |
| 51 | 50 | imp | |- ( ( B e. On /\ f : B --> A ) -> ran f ~<_ B ) |
| 52 | 51 | 3adant1 | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ran f ~<_ B ) |
| 53 | endomtr | |- ( ( ( card ` ran f ) ~~ ran f /\ ran f ~<_ B ) -> ( card ` ran f ) ~<_ B ) |
|
| 54 | 45 52 53 | syl2anc | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) ~<_ B ) |
| 55 | cardon | |- ( card ` ran f ) e. On |
|
| 56 | onenon | |- ( ( card ` ran f ) e. On -> ( card ` ran f ) e. dom card ) |
|
| 57 | 55 56 | ax-mp | |- ( card ` ran f ) e. dom card |
| 58 | carddom2 | |- ( ( ( card ` ran f ) e. dom card /\ B e. dom card ) -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
|
| 59 | 57 46 58 | sylancr | |- ( B e. On -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
| 60 | 59 | 3ad2ant2 | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( ( card ` ( card ` ran f ) ) C_ ( card ` B ) <-> ( card ` ran f ) ~<_ B ) ) |
| 61 | 54 60 | mpbird | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ( card ` ran f ) ) C_ ( card ` B ) ) |
| 62 | cardonle | |- ( B e. On -> ( card ` B ) C_ B ) |
|
| 63 | 62 | 3ad2ant2 | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` B ) C_ B ) |
| 64 | 61 63 | sstrd | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ( card ` ran f ) ) C_ B ) |
| 65 | 38 64 | eqsstrrid | |- ( ( A e. On /\ B e. On /\ f : B --> A ) -> ( card ` ran f ) C_ B ) |
| 66 | 65 | 3expa | |- ( ( ( A e. On /\ B e. On ) /\ f : B --> A ) -> ( card ` ran f ) C_ B ) |
| 67 | 66 | adantrr | |- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( card ` ran f ) C_ B ) |
| 68 | 37 67 | sstrd | |- ( ( ( A e. On /\ B e. On ) /\ ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) ) -> ( cf ` A ) C_ B ) |
| 69 | 68 | ex | |- ( ( A e. On /\ B e. On ) -> ( ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( cf ` A ) C_ B ) ) |
| 70 | 69 | exlimdv | |- ( ( A e. On /\ B e. On ) -> ( E. f ( f : B --> A /\ A. z e. A E. w e. B z C_ ( f ` w ) ) -> ( cf ` A ) C_ B ) ) |