This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015) Remove DV conditions (Revised by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq12d.1 | |- ( ph -> A = B ) |
|
| iuneq12d.2 | |- ( ph -> C = D ) |
||
| Assertion | iuneq12d | |- ( ph -> U_ x e. A C = U_ x e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12d.1 | |- ( ph -> A = B ) |
|
| 2 | iuneq12d.2 | |- ( ph -> C = D ) |
|
| 3 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. B ) ) |
| 4 | 3 | anbi1d | |- ( ph -> ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) ) |
| 5 | 4 | rexbidv2 | |- ( ph -> ( E. x e. A t e. C <-> E. x e. B t e. C ) ) |
| 6 | 5 | abbidv | |- ( ph -> { t | E. x e. A t e. C } = { t | E. x e. B t e. C } ) |
| 7 | df-iun | |- U_ x e. A C = { t | E. x e. A t e. C } |
|
| 8 | df-iun | |- U_ x e. B C = { t | E. x e. B t e. C } |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( ph -> U_ x e. A C = U_ x e. B C ) |
| 10 | 2 | adantr | |- ( ( ph /\ x e. B ) -> C = D ) |
| 11 | 10 | iuneq2dv | |- ( ph -> U_ x e. B C = U_ x e. B D ) |
| 12 | 9 11 | eqtrd | |- ( ph -> U_ x e. A C = U_ x e. B D ) |