This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a set of ordinal numbers B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunon | |- ( ( A e. V /\ A. x e. A B e. On ) -> U_ x e. A B e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun3g | |- ( A. x e. A B e. On -> U_ x e. A B = U. ran ( x e. A |-> B ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. V /\ A. x e. A B e. On ) -> U_ x e. A B = U. ran ( x e. A |-> B ) ) |
| 3 | mptexg | |- ( A e. V -> ( x e. A |-> B ) e. _V ) |
|
| 4 | rnexg | |- ( ( x e. A |-> B ) e. _V -> ran ( x e. A |-> B ) e. _V ) |
|
| 5 | 3 4 | syl | |- ( A e. V -> ran ( x e. A |-> B ) e. _V ) |
| 6 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 7 | 6 | rnmptss | |- ( A. x e. A B e. On -> ran ( x e. A |-> B ) C_ On ) |
| 8 | ssonuni | |- ( ran ( x e. A |-> B ) e. _V -> ( ran ( x e. A |-> B ) C_ On -> U. ran ( x e. A |-> B ) e. On ) ) |
|
| 9 | 8 | imp | |- ( ( ran ( x e. A |-> B ) e. _V /\ ran ( x e. A |-> B ) C_ On ) -> U. ran ( x e. A |-> B ) e. On ) |
| 10 | 5 7 9 | syl2an | |- ( ( A e. V /\ A. x e. A B e. On ) -> U. ran ( x e. A |-> B ) e. On ) |
| 11 | 2 10 | eqeltrd | |- ( ( A e. V /\ A. x e. A B e. On ) -> U_ x e. A B e. On ) |