This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of TakeutiZaring p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg . See fnexALT for alternate proof. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnex | |- ( ( F Fn A /\ A e. B ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel | |- ( F Fn A -> Rel F ) |
|
| 2 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 3 | eleq1a | |- ( A e. B -> ( dom F = A -> dom F e. B ) ) |
|
| 4 | 3 | impcom | |- ( ( dom F = A /\ A e. B ) -> dom F e. B ) |
| 5 | resfunexg | |- ( ( Fun F /\ dom F e. B ) -> ( F |` dom F ) e. _V ) |
|
| 6 | 4 5 | sylan2 | |- ( ( Fun F /\ ( dom F = A /\ A e. B ) ) -> ( F |` dom F ) e. _V ) |
| 7 | 6 | anassrs | |- ( ( ( Fun F /\ dom F = A ) /\ A e. B ) -> ( F |` dom F ) e. _V ) |
| 8 | 2 7 | sylanb | |- ( ( F Fn A /\ A e. B ) -> ( F |` dom F ) e. _V ) |
| 9 | resdm | |- ( Rel F -> ( F |` dom F ) = F ) |
|
| 10 | 9 | eleq1d | |- ( Rel F -> ( ( F |` dom F ) e. _V <-> F e. _V ) ) |
| 11 | 10 | biimpa | |- ( ( Rel F /\ ( F |` dom F ) e. _V ) -> F e. _V ) |
| 12 | 1 8 11 | syl2an2r | |- ( ( F Fn A /\ A e. B ) -> F e. _V ) |