This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " D is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | iscmet | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | |- J = ( MetOpen ` D ) |
|
| 2 | elfvex | |- ( D e. ( CMet ` X ) -> X e. _V ) |
|
| 3 | elfvex | |- ( D e. ( Met ` X ) -> X e. _V ) |
|
| 4 | 3 | adantr | |- ( ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) -> X e. _V ) |
| 5 | fveq2 | |- ( x = X -> ( Met ` x ) = ( Met ` X ) ) |
|
| 6 | 5 | rabeqdv | |- ( x = X -> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 7 | df-cmet | |- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
|
| 8 | fvex | |- ( Met ` X ) e. _V |
|
| 9 | 8 | rabex | |- { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } e. _V |
| 10 | 6 7 9 | fvmpt | |- ( X e. _V -> ( CMet ` X ) = { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 11 | 10 | eleq2d | |- ( X e. _V -> ( D e. ( CMet ` X ) <-> D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) ) |
| 12 | fveq2 | |- ( d = D -> ( CauFil ` d ) = ( CauFil ` D ) ) |
|
| 13 | fveq2 | |- ( d = D -> ( MetOpen ` d ) = ( MetOpen ` D ) ) |
|
| 14 | 13 1 | eqtr4di | |- ( d = D -> ( MetOpen ` d ) = J ) |
| 15 | 14 | oveq1d | |- ( d = D -> ( ( MetOpen ` d ) fLim f ) = ( J fLim f ) ) |
| 16 | 15 | neeq1d | |- ( d = D -> ( ( ( MetOpen ` d ) fLim f ) =/= (/) <-> ( J fLim f ) =/= (/) ) ) |
| 17 | 12 16 | raleqbidv | |- ( d = D -> ( A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| 18 | 17 | elrab | |- ( D e. { d e. ( Met ` X ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| 19 | 11 18 | bitrdi | |- ( X e. _V -> ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) ) |
| 20 | 2 4 19 | pm5.21nii | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |