This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of TakeutiZaring p. 91. (Later, in alephfp2 , we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003) (Proof shortened by Mario Carneiro, 22-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephle | |- ( A e. On -> A C_ ( aleph ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( x = y -> x = y ) |
|
| 2 | fveq2 | |- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
|
| 3 | 1 2 | sseq12d | |- ( x = y -> ( x C_ ( aleph ` x ) <-> y C_ ( aleph ` y ) ) ) |
| 4 | id | |- ( x = A -> x = A ) |
|
| 5 | fveq2 | |- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
|
| 6 | 4 5 | sseq12d | |- ( x = A -> ( x C_ ( aleph ` x ) <-> A C_ ( aleph ` A ) ) ) |
| 7 | alephord2i | |- ( x e. On -> ( y e. x -> ( aleph ` y ) e. ( aleph ` x ) ) ) |
|
| 8 | 7 | imp | |- ( ( x e. On /\ y e. x ) -> ( aleph ` y ) e. ( aleph ` x ) ) |
| 9 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 10 | alephon | |- ( aleph ` x ) e. On |
|
| 11 | ontr2 | |- ( ( y e. On /\ ( aleph ` x ) e. On ) -> ( ( y C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` x ) ) -> y e. ( aleph ` x ) ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( x e. On /\ y e. x ) -> ( ( y C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` x ) ) -> y e. ( aleph ` x ) ) ) |
| 13 | 8 12 | mpan2d | |- ( ( x e. On /\ y e. x ) -> ( y C_ ( aleph ` y ) -> y e. ( aleph ` x ) ) ) |
| 14 | 13 | ralimdva | |- ( x e. On -> ( A. y e. x y C_ ( aleph ` y ) -> A. y e. x y e. ( aleph ` x ) ) ) |
| 15 | 10 | onirri | |- -. ( aleph ` x ) e. ( aleph ` x ) |
| 16 | eleq1 | |- ( y = ( aleph ` x ) -> ( y e. ( aleph ` x ) <-> ( aleph ` x ) e. ( aleph ` x ) ) ) |
|
| 17 | 16 | rspccv | |- ( A. y e. x y e. ( aleph ` x ) -> ( ( aleph ` x ) e. x -> ( aleph ` x ) e. ( aleph ` x ) ) ) |
| 18 | 15 17 | mtoi | |- ( A. y e. x y e. ( aleph ` x ) -> -. ( aleph ` x ) e. x ) |
| 19 | ontri1 | |- ( ( x e. On /\ ( aleph ` x ) e. On ) -> ( x C_ ( aleph ` x ) <-> -. ( aleph ` x ) e. x ) ) |
|
| 20 | 10 19 | mpan2 | |- ( x e. On -> ( x C_ ( aleph ` x ) <-> -. ( aleph ` x ) e. x ) ) |
| 21 | 18 20 | imbitrrid | |- ( x e. On -> ( A. y e. x y e. ( aleph ` x ) -> x C_ ( aleph ` x ) ) ) |
| 22 | 14 21 | syld | |- ( x e. On -> ( A. y e. x y C_ ( aleph ` y ) -> x C_ ( aleph ` x ) ) ) |
| 23 | 3 6 22 | tfis3 | |- ( A e. On -> A C_ ( aleph ` A ) ) |