This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| oemapval.f | |- ( ph -> F e. S ) |
||
| oemapval.g | |- ( ph -> G e. S ) |
||
| oemapvali.r | |- ( ph -> F T G ) |
||
| oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
||
| Assertion | cantnflem1a | |- ( ph -> X e. ( G supp (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | oemapval.f | |- ( ph -> F e. S ) |
|
| 6 | oemapval.g | |- ( ph -> G e. S ) |
|
| 7 | oemapvali.r | |- ( ph -> F T G ) |
|
| 8 | oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
|
| 9 | 1 2 3 4 5 6 7 8 | oemapvali | |- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 10 | 9 | simp1d | |- ( ph -> X e. B ) |
| 11 | 9 | simp2d | |- ( ph -> ( F ` X ) e. ( G ` X ) ) |
| 12 | 11 | ne0d | |- ( ph -> ( G ` X ) =/= (/) ) |
| 13 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 14 | 6 13 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 15 | 14 | simpld | |- ( ph -> G : B --> A ) |
| 16 | 15 | ffnd | |- ( ph -> G Fn B ) |
| 17 | 0ex | |- (/) e. _V |
|
| 18 | 17 | a1i | |- ( ph -> (/) e. _V ) |
| 19 | elsuppfn | |- ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
|
| 20 | 16 3 18 19 | syl3anc | |- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 21 | 10 12 20 | mpbir2and | |- ( ph -> X e. ( G supp (/) ) ) |