This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr | |- ( Ord A -> Tr A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
| 2 | 1 | simplbi | |- ( Ord A -> Tr A ) |