This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019) (Proof shortened by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| oemapval.f | |- ( ph -> F e. S ) |
||
| oemapval.g | |- ( ph -> G e. S ) |
||
| oemapvali.r | |- ( ph -> F T G ) |
||
| oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
||
| cantnflem1.o | |- O = OrdIso ( _E , ( G supp (/) ) ) |
||
| Assertion | cantnflem1c | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. ( G supp (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | oemapval.f | |- ( ph -> F e. S ) |
|
| 6 | oemapval.g | |- ( ph -> G e. S ) |
|
| 7 | oemapvali.r | |- ( ph -> F T G ) |
|
| 8 | oemapvali.x | |- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
|
| 9 | cantnflem1.o | |- O = OrdIso ( _E , ( G supp (/) ) ) |
|
| 10 | 3 | ad3antrrr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> B e. On ) |
| 11 | simplr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. B ) |
|
| 12 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 13 | 6 12 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 14 | 13 | simpld | |- ( ph -> G : B --> A ) |
| 15 | 14 | ffnd | |- ( ph -> G Fn B ) |
| 16 | 15 | ad3antrrr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> G Fn B ) |
| 17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b | |- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X C_ ( O ` u ) ) |
| 19 | simprr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( O ` u ) e. x ) |
|
| 20 | 1 2 3 4 5 6 7 8 | oemapvali | |- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 21 | 20 | simp1d | |- ( ph -> X e. B ) |
| 22 | onelon | |- ( ( B e. On /\ X e. B ) -> X e. On ) |
|
| 23 | 3 21 22 | syl2anc | |- ( ph -> X e. On ) |
| 24 | 23 | ad3antrrr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. On ) |
| 25 | onss | |- ( B e. On -> B C_ On ) |
|
| 26 | 3 25 | syl | |- ( ph -> B C_ On ) |
| 27 | 26 | sselda | |- ( ( ph /\ x e. B ) -> x e. On ) |
| 28 | 27 | ad4ant13 | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. On ) |
| 29 | ontr2 | |- ( ( X e. On /\ x e. On ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) |
|
| 30 | 24 28 29 | syl2anc | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) |
| 31 | 18 19 30 | mp2and | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. x ) |
| 32 | eleq2w | |- ( w = x -> ( X e. w <-> X e. x ) ) |
|
| 33 | fveq2 | |- ( w = x -> ( F ` w ) = ( F ` x ) ) |
|
| 34 | fveq2 | |- ( w = x -> ( G ` w ) = ( G ` x ) ) |
|
| 35 | 33 34 | eqeq12d | |- ( w = x -> ( ( F ` w ) = ( G ` w ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 36 | 32 35 | imbi12d | |- ( w = x -> ( ( X e. w -> ( F ` w ) = ( G ` w ) ) <-> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) ) |
| 37 | 20 | simp3d | |- ( ph -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) |
| 38 | 37 | ad3antrrr | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) |
| 39 | 36 38 11 | rspcdva | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) |
| 40 | 31 39 | mpd | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) = ( G ` x ) ) |
| 41 | simprl | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) =/= (/) ) |
|
| 42 | 40 41 | eqnetrrd | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( G ` x ) =/= (/) ) |
| 43 | fvn0elsupp | |- ( ( ( B e. On /\ x e. B ) /\ ( G Fn B /\ ( G ` x ) =/= (/) ) ) -> x e. ( G supp (/) ) ) |
|
| 44 | 10 11 16 42 43 | syl22anc | |- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. ( G supp (/) ) ) |