This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive function H at a successor. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cantnfcl.f | |- ( ph -> F e. S ) |
||
| cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
||
| Assertion | cantnfsuc | |- ( ( ph /\ K e. _om ) -> ( H ` suc K ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 5 | cantnfcl.f | |- ( ph -> F e. S ) |
|
| 6 | cantnfval.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
|
| 7 | 6 | seqomsuc | |- ( K e. _om -> ( H ` suc K ) = ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) ) |
| 8 | 7 | adantl | |- ( ( ph /\ K e. _om ) -> ( H ` suc K ) = ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) ) |
| 9 | elex | |- ( K e. _om -> K e. _V ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ K e. _om ) -> K e. _V ) |
| 11 | fvex | |- ( H ` K ) e. _V |
|
| 12 | simpl | |- ( ( u = K /\ v = ( H ` K ) ) -> u = K ) |
|
| 13 | 12 | fveq2d | |- ( ( u = K /\ v = ( H ` K ) ) -> ( G ` u ) = ( G ` K ) ) |
| 14 | 13 | oveq2d | |- ( ( u = K /\ v = ( H ` K ) ) -> ( A ^o ( G ` u ) ) = ( A ^o ( G ` K ) ) ) |
| 15 | 13 | fveq2d | |- ( ( u = K /\ v = ( H ` K ) ) -> ( F ` ( G ` u ) ) = ( F ` ( G ` K ) ) ) |
| 16 | 14 15 | oveq12d | |- ( ( u = K /\ v = ( H ` K ) ) -> ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) = ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) ) |
| 17 | simpr | |- ( ( u = K /\ v = ( H ` K ) ) -> v = ( H ` K ) ) |
|
| 18 | 16 17 | oveq12d | |- ( ( u = K /\ v = ( H ` K ) ) -> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 19 | fveq2 | |- ( k = u -> ( G ` k ) = ( G ` u ) ) |
|
| 20 | 19 | oveq2d | |- ( k = u -> ( A ^o ( G ` k ) ) = ( A ^o ( G ` u ) ) ) |
| 21 | 19 | fveq2d | |- ( k = u -> ( F ` ( G ` k ) ) = ( F ` ( G ` u ) ) ) |
| 22 | 20 21 | oveq12d | |- ( k = u -> ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) = ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) ) |
| 23 | 22 | oveq1d | |- ( k = u -> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) = ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o z ) ) |
| 24 | oveq2 | |- ( z = v -> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o z ) = ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) ) |
|
| 25 | 23 24 | cbvmpov | |- ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) = ( u e. _V , v e. _V |-> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) ) |
| 26 | ovex | |- ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) e. _V |
|
| 27 | 18 25 26 | ovmpoa | |- ( ( K e. _V /\ ( H ` K ) e. _V ) -> ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 28 | 10 11 27 | sylancl | |- ( ( ph /\ K e. _om ) -> ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 29 | 8 28 | eqtrd | |- ( ( ph /\ K e. _om ) -> ( H ` suc K ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |