This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . The function appearing in cantnfval is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cantnfvalf.f | |- F = seqom ( ( k e. A , z e. B |-> ( C +o D ) ) , (/) ) |
|
| Assertion | cantnfvalf | |- F : _om --> On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfvalf.f | |- F = seqom ( ( k e. A , z e. B |-> ( C +o D ) ) , (/) ) |
|
| 2 | 1 | fnseqom | |- F Fn _om |
| 3 | nn0suc | |- ( x e. _om -> ( x = (/) \/ E. y e. _om x = suc y ) ) |
|
| 4 | fveq2 | |- ( x = (/) -> ( F ` x ) = ( F ` (/) ) ) |
|
| 5 | 0ex | |- (/) e. _V |
|
| 6 | 1 | seqom0g | |- ( (/) e. _V -> ( F ` (/) ) = (/) ) |
| 7 | 5 6 | ax-mp | |- ( F ` (/) ) = (/) |
| 8 | 4 7 | eqtrdi | |- ( x = (/) -> ( F ` x ) = (/) ) |
| 9 | 0elon | |- (/) e. On |
|
| 10 | 8 9 | eqeltrdi | |- ( x = (/) -> ( F ` x ) e. On ) |
| 11 | 1 | seqomsuc | |- ( y e. _om -> ( F ` suc y ) = ( y ( k e. A , z e. B |-> ( C +o D ) ) ( F ` y ) ) ) |
| 12 | df-ov | |- ( y ( k e. A , z e. B |-> ( C +o D ) ) ( F ` y ) ) = ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) |
|
| 13 | 11 12 | eqtrdi | |- ( y e. _om -> ( F ` suc y ) = ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) ) |
| 14 | df-ov | |- ( C +o D ) = ( +o ` <. C , D >. ) |
|
| 15 | fnoa | |- +o Fn ( On X. On ) |
|
| 16 | oacl | |- ( ( x e. On /\ y e. On ) -> ( x +o y ) e. On ) |
|
| 17 | 16 | rgen2 | |- A. x e. On A. y e. On ( x +o y ) e. On |
| 18 | ffnov | |- ( +o : ( On X. On ) --> On <-> ( +o Fn ( On X. On ) /\ A. x e. On A. y e. On ( x +o y ) e. On ) ) |
|
| 19 | 15 17 18 | mpbir2an | |- +o : ( On X. On ) --> On |
| 20 | 19 9 | f0cli | |- ( +o ` <. C , D >. ) e. On |
| 21 | 14 20 | eqeltri | |- ( C +o D ) e. On |
| 22 | 21 | rgen2w | |- A. k e. A A. z e. B ( C +o D ) e. On |
| 23 | eqid | |- ( k e. A , z e. B |-> ( C +o D ) ) = ( k e. A , z e. B |-> ( C +o D ) ) |
|
| 24 | 23 | fmpo | |- ( A. k e. A A. z e. B ( C +o D ) e. On <-> ( k e. A , z e. B |-> ( C +o D ) ) : ( A X. B ) --> On ) |
| 25 | 22 24 | mpbi | |- ( k e. A , z e. B |-> ( C +o D ) ) : ( A X. B ) --> On |
| 26 | 25 9 | f0cli | |- ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) e. On |
| 27 | 13 26 | eqeltrdi | |- ( y e. _om -> ( F ` suc y ) e. On ) |
| 28 | fveq2 | |- ( x = suc y -> ( F ` x ) = ( F ` suc y ) ) |
|
| 29 | 28 | eleq1d | |- ( x = suc y -> ( ( F ` x ) e. On <-> ( F ` suc y ) e. On ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( y e. _om -> ( x = suc y -> ( F ` x ) e. On ) ) |
| 31 | 30 | rexlimiv | |- ( E. y e. _om x = suc y -> ( F ` x ) e. On ) |
| 32 | 10 31 | jaoi | |- ( ( x = (/) \/ E. y e. _om x = suc y ) -> ( F ` x ) e. On ) |
| 33 | 3 32 | syl | |- ( x e. _om -> ( F ` x ) e. On ) |
| 34 | 33 | rgen | |- A. x e. _om ( F ` x ) e. On |
| 35 | ffnfv | |- ( F : _om --> On <-> ( F Fn _om /\ A. x e. _om ( F ` x ) e. On ) ) |
|
| 36 | 2 34 35 | mpbir2an | |- F : _om --> On |