This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | endjudisj | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | xpsnen2g | |- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 4 | 2 3 | mpan | |- ( A e. V -> ( { (/) } X. A ) ~~ A ) |
| 5 | 1on | |- 1o e. On |
|
| 6 | xpsnen2g | |- ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) |
|
| 7 | 5 6 | mpan | |- ( B e. W -> ( { 1o } X. B ) ~~ B ) |
| 8 | 4 7 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) ) |
| 9 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) |
|
| 10 | 9 | jctl | |- ( ( A i^i B ) = (/) -> ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) |
| 11 | unen | |- ( ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) /\ ( A i^i B ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( ( A e. V /\ B e. W ) /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
| 13 | 12 | 3impa | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~~ ( A u. B ) ) |
| 14 | 1 13 | eqbrtrid | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |