This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domunsn | |- ( A ~< B -> ( A u. { C } ) ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdom0 | |- -. A ~< (/) |
|
| 2 | breq2 | |- ( B = (/) -> ( A ~< B <-> A ~< (/) ) ) |
|
| 3 | 1 2 | mtbiri | |- ( B = (/) -> -. A ~< B ) |
| 4 | 3 | con2i | |- ( A ~< B -> -. B = (/) ) |
| 5 | neq0 | |- ( -. B = (/) <-> E. z z e. B ) |
|
| 6 | 4 5 | sylib | |- ( A ~< B -> E. z z e. B ) |
| 7 | domdifsn | |- ( A ~< B -> A ~<_ ( B \ { z } ) ) |
|
| 8 | 7 | adantr | |- ( ( A ~< B /\ z e. B ) -> A ~<_ ( B \ { z } ) ) |
| 9 | en2sn | |- ( ( C e. _V /\ z e. _V ) -> { C } ~~ { z } ) |
|
| 10 | 9 | elvd | |- ( C e. _V -> { C } ~~ { z } ) |
| 11 | endom | |- ( { C } ~~ { z } -> { C } ~<_ { z } ) |
|
| 12 | 10 11 | syl | |- ( C e. _V -> { C } ~<_ { z } ) |
| 13 | snprc | |- ( -. C e. _V <-> { C } = (/) ) |
|
| 14 | 13 | biimpi | |- ( -. C e. _V -> { C } = (/) ) |
| 15 | vsnex | |- { z } e. _V |
|
| 16 | 15 | 0dom | |- (/) ~<_ { z } |
| 17 | 14 16 | eqbrtrdi | |- ( -. C e. _V -> { C } ~<_ { z } ) |
| 18 | 12 17 | pm2.61i | |- { C } ~<_ { z } |
| 19 | disjdifr | |- ( ( B \ { z } ) i^i { z } ) = (/) |
|
| 20 | undom | |- ( ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) /\ ( ( B \ { z } ) i^i { z } ) = (/) ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) |
|
| 21 | 19 20 | mpan2 | |- ( ( A ~<_ ( B \ { z } ) /\ { C } ~<_ { z } ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) |
| 22 | 8 18 21 | sylancl | |- ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ ( ( B \ { z } ) u. { z } ) ) |
| 23 | uncom | |- ( ( B \ { z } ) u. { z } ) = ( { z } u. ( B \ { z } ) ) |
|
| 24 | simpr | |- ( ( A ~< B /\ z e. B ) -> z e. B ) |
|
| 25 | 24 | snssd | |- ( ( A ~< B /\ z e. B ) -> { z } C_ B ) |
| 26 | undif | |- ( { z } C_ B <-> ( { z } u. ( B \ { z } ) ) = B ) |
|
| 27 | 25 26 | sylib | |- ( ( A ~< B /\ z e. B ) -> ( { z } u. ( B \ { z } ) ) = B ) |
| 28 | 23 27 | eqtrid | |- ( ( A ~< B /\ z e. B ) -> ( ( B \ { z } ) u. { z } ) = B ) |
| 29 | 22 28 | breqtrd | |- ( ( A ~< B /\ z e. B ) -> ( A u. { C } ) ~<_ B ) |
| 30 | 6 29 | exlimddv | |- ( A ~< B -> ( A u. { C } ) ~<_ B ) |