This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuxpdom | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | relsdom | |- Rel ~< |
|
| 4 | 3 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 5 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 6 | 2 4 5 | sylancr | |- ( 1o ~< A -> ( { (/) } X. A ) ~~ A ) |
| 7 | sdomen2 | |- ( ( { (/) } X. A ) ~~ A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) |
|
| 8 | 6 7 | syl | |- ( 1o ~< A -> ( 1o ~< ( { (/) } X. A ) <-> 1o ~< A ) ) |
| 9 | 8 | ibir | |- ( 1o ~< A -> 1o ~< ( { (/) } X. A ) ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | 3 | brrelex2i | |- ( 1o ~< B -> B e. _V ) |
| 12 | xpsnen2g | |- ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) |
|
| 13 | 10 11 12 | sylancr | |- ( 1o ~< B -> ( { 1o } X. B ) ~~ B ) |
| 14 | sdomen2 | |- ( ( { 1o } X. B ) ~~ B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) |
|
| 15 | 13 14 | syl | |- ( 1o ~< B -> ( 1o ~< ( { 1o } X. B ) <-> 1o ~< B ) ) |
| 16 | 15 | ibir | |- ( 1o ~< B -> 1o ~< ( { 1o } X. B ) ) |
| 17 | unxpdom | |- ( ( 1o ~< ( { (/) } X. A ) /\ 1o ~< ( { 1o } X. B ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
|
| 18 | 9 16 17 | syl2an | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
| 19 | 1 18 | eqbrtrid | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ) |
| 20 | xpen | |- ( ( ( { (/) } X. A ) ~~ A /\ ( { 1o } X. B ) ~~ B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) |
|
| 21 | 6 13 20 | syl2an | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) |
| 22 | domentr | |- ( ( ( A |_| B ) ~<_ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) X. ( { 1o } X. B ) ) ~~ ( A X. B ) ) -> ( A |_| B ) ~<_ ( A X. B ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A |_| B ) ~<_ ( A X. B ) ) |