This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip3.a | |- ( ph -> A e. RR ) |
|
| c1lip3.b | |- ( ph -> B e. RR ) |
||
| c1lip3.f | |- ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) |
||
| c1lip3.rn | |- ( ph -> ( F " RR ) C_ RR ) |
||
| c1lip3.dm | |- ( ph -> ( A [,] B ) C_ dom F ) |
||
| Assertion | c1lip3 | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip3.a | |- ( ph -> A e. RR ) |
|
| 2 | c1lip3.b | |- ( ph -> B e. RR ) |
|
| 3 | c1lip3.f | |- ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) |
|
| 4 | c1lip3.rn | |- ( ph -> ( F " RR ) C_ RR ) |
|
| 5 | c1lip3.dm | |- ( ph -> ( A [,] B ) C_ dom F ) |
|
| 6 | df-ima | |- ( F " RR ) = ran ( F |` RR ) |
|
| 7 | 6 4 | eqsstrrid | |- ( ph -> ran ( F |` RR ) C_ RR ) |
| 8 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 10 | 9 5 | ssind | |- ( ph -> ( A [,] B ) C_ ( RR i^i dom F ) ) |
| 11 | dmres | |- dom ( F |` RR ) = ( RR i^i dom F ) |
|
| 12 | 10 11 | sseqtrrdi | |- ( ph -> ( A [,] B ) C_ dom ( F |` RR ) ) |
| 13 | 1 2 3 7 12 | c1lip2 | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| 14 | 9 | sseld | |- ( ph -> ( x e. ( A [,] B ) -> x e. RR ) ) |
| 15 | 9 | sseld | |- ( ph -> ( y e. ( A [,] B ) -> y e. RR ) ) |
| 16 | 14 15 | anim12d | |- ( ph -> ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x e. RR /\ y e. RR ) ) ) |
| 17 | 16 | imp | |- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x e. RR /\ y e. RR ) ) |
| 18 | fvres | |- ( y e. RR -> ( ( F |` RR ) ` y ) = ( F ` y ) ) |
|
| 19 | fvres | |- ( x e. RR -> ( ( F |` RR ) ` x ) = ( F ` x ) ) |
|
| 20 | 18 19 | oveqan12rd | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) |
| 21 | 20 | fveq2d | |- ( ( x e. RR /\ y e. RR ) -> ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) |
| 22 | 21 | breq1d | |- ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 23 | 22 | biimpd | |- ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 24 | 17 23 | syl | |- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 25 | 24 | ralimdvva | |- ( ph -> ( A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 26 | 25 | reximdv | |- ( ph -> ( E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) |
| 27 | 13 26 | mpd | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |