This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvn0 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
|
| 2 | 1 | dvnfval | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 3 | 2 | fveq1d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` 0 ) ) |
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | simpr | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> F e. ( CC ^pm S ) ) |
|
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | fvconst2g | |- ( ( F e. ( CC ^pm S ) /\ 0 e. NN0 ) -> ( ( NN0 X. { F } ) ` 0 ) = F ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( NN0 X. { F } ) ` 0 ) = F ) |
| 9 | 4 8 | seq1i | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ` 0 ) = F ) |
| 10 | 3 9 | eqtrd | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |